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Abstract. A classical result in knot theory says that for a fibered knot the Alexan-
der polynomial is monic and that the degree equals twice the genus of the knot.
This result has been generalized by various authors to twisted Alexander polynomi-
als and fibered 3–manifolds. In this paper we show that the conditions on twisted
Alexander polynomials are not only necessary but also sufficient for a 3–manifold
to be fibered. By previous work of the authors this result implies that if a manifold
of the form S1 ×N3 admits a symplectic structure, then N fibers over S1. In fact
we will completely determine the symplectic cone of S1 ×N in terms of the fibered
faces of the Thurston norm ball of N .

1. Introduction

1.1. Twisted Alexander polynomials and fibered 3–manifolds. Let N be a
compact, connected, oriented 3–manifold with empty or toroidal boundary. Given a
nontrivial class ϕ ∈ H1(N ;Z) = Hom(π1(N),Z) we say that (N,ϕ) fibers over S1 if
there exists a fibration f : N → S1 such that the induced map f∗ : π1(N)→ π1(S

1) =
Z agrees with ϕ. Stated otherwise, the homotopy class in [N,S1] = H1(N ;Z) identi-
fied by ϕ can be represented by a fibration.

It is a classical result in knot theory that if a knot K ⊂ S3 is fibered, then the
Alexander polynomial is monic (i.e. the top coefficient equals ±1), and the degree of
the Alexander polynomial equals twice the genus of the knot. This result has been
generalized in various directions by several authors (e.g. [McM02, Ch03, GKM05,
FK06, Ki07]) to show that twisted Alexander polynomials give necessary conditions
for (N, ϕ) to fiber.

To formulate this kind of result more precisely we have to introduce some defini-
tions. Let N be a 3–manifold with empty or toroidal boundary and let ϕ ∈ H1(N ;Z).
Given (N,ϕ) the Thurston norm of ϕ (cf. [Th86]) is defined as

||ϕ||T = min{χ−(S) |S ⊂ N properly embedded surface dual to ϕ}.
Here, given a surface S with connected components S1 ∪ · · · ∪ Sk, we define χ−(S) =∑k

i=1 max{−χ(Si), 0}.

Date: May 18, 2010.
S. Friedl was supported by a CRM–ISM Fellowship and by CIRGET.
S. Vidussi was partially supported by a University of California Regents’ Faculty Fellowships and

by NSF grant #0906281.
1



2 STEFAN FRIEDL AND STEFANO VIDUSSI

In the following we assume that ϕ ∈ H1(N ;Z) is non–trivial. Let α : π1(N)→ G be
a homomorphism to a finite group. We have the permutation representation π1(N)→
Aut(Z[G]) given by left multiplication, which we also denote by α. We can therefore
consider the twisted Alexander polynomial ∆α

N,ϕ ∈ Z[t±1], whose definition is detailed

in Section 2.3. We denote by ϕα the restriction of ϕ ∈ H1(N ;Z) = Hom(π1(N),Z)
to Ker(α). Note that ϕα is necessarily non–trivial. We denote by divϕα ∈ N the
divisibility of ϕα, i.e.

divϕα = max{n ∈ N |ϕα = nψ for some ψ : Ker(α)→ Z}.

We can now formulate the following theorem which appears as [FK06, Theorem 1.3
and Remark p. 938].

Theorem 1.1. Let N ̸= S1 × S2, S1 × D2 be a 3–manifold with empty or toroidal
boundary. Let ϕ ∈ H1(N ;Z) a nontrivial class. If (N,ϕ) fibers over S1, then for any
homomorphism α : π1(N) → G to a finite group the twisted Alexander polynomial
∆α
N,ϕ ∈ Z[t±1] is monic and

deg(∆α
N,ϕ) = |G| ∥ϕ∥T + (1 + b3(N))divϕα.

It is well known that in general the constraint of monicness and degree for the
ordinary Alexander polynomial falls short from characterizing fibered 3–manifolds.
The main result of this paper is to show that on the other hand the collection of all
twisted Alexander polynomials does detect fiberedness, i.e. the converse of Theorem
1.1 holds true:

Theorem 1.2. Let N be a 3–manifold with empty or toroidal boundary. Let ϕ ∈
H1(N ;Z) a nontrivial class. If for any homomorphism α : π1(N) → G to a finite
group the twisted Alexander polynomial ∆α

N,ϕ ∈ Z[t±1] is monic and

deg(∆α
N,ϕ) = |G| ∥ϕ∥T + (1 + b3(N))divϕα

holds, then (N,ϕ) fibers over S1.

Note that alternatively it is possible to rephrase this statement in terms of Alexan-
der polynomials of the finite regular covers of N , using the fact that ∆α

N,ϕ = ∆Ñ,p∗(ϕ)

(cf. [FV08a]), where p : Ñ → N is the cover of N determined by Ker(α).
Note that this theorem asserts that twisted Alexander polynomials detect whether

(N,ϕ) fibers under the assumption that ||ϕ||T is known; while it is known that twisted
Alexander polynomials give lower bounds (cf. [FK06, Theorem 1.1]), it is still an open
question whether twisted Alexander polynomials determine the Thurston norm.

In the case where ϕ has trivial Thurston norm, this result is proven in [FV08b],
using subgroup separability. Here, following a different route (see Section 1.3 for a
summary of the proof), we prove the general case.
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1.2. Symplectic 4–manifolds and twisted Alexander polynomials. In 1976
Thurston [Th76] showed that if a closed 3–manifold N admits a fibration over S1,
then S1×N admits a symplectic structure, i.e. a closed, nondegenerate 2–form ω. It
is natural to ask whether the converse to this statement holds true. In its simplest
form, we can state this problem in the following way:

Conjecture 1.3. Let N be a closed 3–manifold. If S1 ×N is symplectic, then there
exists a ϕ ∈ H1(N ;Z) such that (N, ϕ) fibers over S1.

Interest in this question was motivated by Taubes’ results in the study of Seiberg-
Witten invariants of symplectic 4–manifolds (see [Ta94, Ta95]), that gave initial ev-
idence to an affirmative solution of this conjecture. In the special case where N is
obtained via 0–surgery along a knot in S3, this question appears also in [Kr98, Ques-
tion 7.11]. Over the last ten years evidence for this conjecture was given by various
authors [Kr98, CM00, Et01, McC01, Vi03].

In [FV08a] the authors initiated a project relating Conjecture 1.3 to the study of
twisted Alexander polynomials. The outcome of that investigation is that if S1 ×
N is symplectic, then the twisted Alexander polynomials of N behave like twisted
Alexander polynomials of a fibered 3–manifold. More precisely, the following holds
(cf. [FV08a, Theorem 4.4]):

Theorem 1.4. Let N be an irreducible closed 3–manifold and ω a symplectic structure
on S1 × N such that ω represents an integral cohomology class. Let ϕ ∈ H1(N ;Z)
be the Künneth component of [ω] ∈ H2(S1 × N ;Z). Then for any homomorphism
α : π1(N) → G to a finite group the twisted Alexander polynomial ∆α

N,ϕ ∈ Z[t±1] is
monic and

deg(∆α
N,ϕ) = |G| ∥ϕ∥T + 2divϕα.

Note that it follows from McCarthy’s work [McC01] (see also Lemma 7.1) and
Perelman’s proof of the geometrization conjecture (cf. e.g. [MT07]) that if S1×N is
symplectic, then N is prime, i.e. either irreducible or S1×S2. The proof of Theorem
1.4 relies heavily on the results of [Kr98] and [Vi03], which in turn build on results of
Taubes [Ta94, Ta95] and Donaldson [Do96].

As the symplectic condition is open, the assumption that a symplectic manifold
admits an integral symplectic form is not restrictive. Therefore, combining Theorem
1.2 with Theorem 1.4, we deduce that Conjecture 1.3 holds true. In fact, in light of
[FV07, Theorems 7.1 and 7.2], we have the following more refined statement:

Theorem 1.5. Let N be a closed oriented 3–manifold. Then given Ω ∈ H2(S1×N ;R)
the following are equivalent:

(1) Ω can be represented by a symplectic structure;
(2) Ω can be represented by a symplectic structure which is S1–invariant;
(3) Ω2 > 0 and the Künneth component ϕ ∈ H1(N ;R) of Ω lies in the open cone

on a fibered face of the Thurston norm ball of N .
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Note that the theorem allows us in particular to completely determine the sym-
plectic cone of a manifold of the form S1 ×N in terms of the fibered cones of N .

Combined with the results of [FV07, FV08a], Theorem 1.2 shows in particular that
the collection of the Seiberg-Witten invariants of all finite covers of S1×N determines
whether S1×N is symplectic or not. In particular, we have the following corollary (we
refer to [Vi99, Vi03] for the notation and the formulation in the case that b1(N) = 1).

Corollary 1.6. Let N be a closed 3–manifold with b1(N) > 1. Then given a spinc

structure K ∈ H2(S1 ×N ;Z) there exists a symplectic structure representing a coho-
mology class Ω ∈ H2(S1 × N ;R) with canonical class K if and only if the following
conditions hold:

(1) K · ϕ = ∥ϕ∥T , where ϕ ∈ H1(N ;R) is the Künneth component of Ω,

and for any regular finite cover p : Ñ → N

(2) SWS1×Ñ(p
∗(K)) = 1,

(3) for any Seiberg–Witten basic class κ ∈ H2(S1 × Ñ ;Z) we have

|p∗(κ) · ϕ| ≤ deg(p) K · ϕ,
(where p∗ is the transfer map) and the latter equality holds if and only if
κ = ±p∗K.

(Note that, under the hypotheses of the Corollary, all basic classes of S1 × Ñ are
the pull–back of elements of H2(Ñ ;Z).)

Remark. A different approach to Conjecture 1.3 involves a deeper investigation
of the consequence of the symplectic condition on S1 × N , that goes beyond the
information encoded in Theorem 1.4. A major breakthrough in this direction has
recently been obtained by Kutluhan and Taubes ([KT09]). They show that if N is
a 3–manifold such that S1 ×N is symplectic, under some cohomological assumption
on the symplectic form, then the Monopole Floer homology of N behaves like the
Monopole Floer homology of a fibered 3–manifold. On the other hand it is known,
due to the work of Ghiggini, Kronheimer and Mrowka, and Ni that Monopole Floer
homology detects fibered 3–manifolds ([Gh08, Ni09, KM08, Ni08]). The combination
of the above results proves in particular Conjecture 1.3 in the case that b1(N) = 1.

1.3. Fibered 3–manifolds and finite solvable groups: outline of the proof.
In this subsection we will outline the strategy of the proof of Theorem 1.2. It is useful
to introduce the following definition.

Definition. Let N be a 3–manifold with empty or toroidal boundary, and let ϕ ∈
H1(N ;Z) be a nontrivial class. We say that (N,ϕ) satisfies Condition (∗) if for any
homomorphism α : π1(N) → G to a finite group the twisted Alexander polynomial
∆α
N,ϕ ∈ Z[t±1] is monic and

deg(∆α
N,ϕ) = |G| ∥ϕ∥T + (1 + b3(N))divϕα.
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It is well–known (see [McC01] for the closed case, and 7.1 for the general case)
that Condition (∗) implies, using geometrization, that N is prime, so we can restrict
ourself to the case where N is irreducible.

Note that McMullen [McM02] showed that, when the class ϕ is primitive, the
condition ∆N,ϕ ̸= 0 implies that there exists a connected Thurston norm minimizing
surface Σ dual to ϕ. It is well–known that to prove Theorem 1.2 it is sufficient to
consider a primitive ϕ, and we will assume that in the following. DenoteM = N \νΣ;
the boundary of M contains two copies Σ± of Σ and throughout the paper we denote
the inclusion induced maps Σ→ Σ± →M by ι±.

By Stallings’ theorem [St62] the surface Σ is a fiber of a fibrationN → S1 if and only
if ι± : π1(Σ)→ π1(M) are isomorphisms. Hence to prove Theorem 1.2 we need to show
that if (N, ϕ) satisfies Condition (∗), then the monomorphisms ι± : π1(Σ) → π1(M)
are in fact isomorphisms. Using purely group theoretic arguments we are not able to
show directly that Condition (∗) implies the desired isomorphism; however, we have
the following result:

Proposition 1.7. Assume that (N, ϕ) satisfies Condition (∗) and that ϕ is primitive.
Let Σ ⊂ N be a connected Thurston norm minimizing surface dual to ϕ and let ι be
either of the two inclusion maps of Σ into M = N \ νΣ. Then ι : π1(Σ) → π1(M)
induces an isomorphism of the prosolvable completions.

We refer to Section 2.4 for information regarding group completions. Proposition
1.7 translates the information from Condition (∗) into information regarding the maps
ι± : π1(Σ) → π1(M). From a purely group theoretic point of view it is a difficult
problem to decide whether a homomorphism which gives rise to an isomorphism of
prosolvable completions has to be an isomorphism itself (cf. [Gr70], [BG04], [AHKS07]
and also Lemma 4.7). But in our 3–dimensional setting we can use a recent result of
Agol [Ag08] to prove the following theorem.

Theorem 1.8. Let N be an irreducible 3–manifold with empty or toroidal boundary.
Let Σ ⊂ N be a connected Thurston norm minimizing surface. We writeM = N \νΣ.
Assume the following hold:

(1) the inclusion induced maps ι± : π1(Σ) → π1(M) give rise to isomorphisms of
the respective prosolvable completions, and

(2) π1(M) is residually finite solvable,

then ι± : π1(Σ)→ π1(M) are isomorphisms, hence M = Σ× I.
In light of Proposition 1.7, the remaining obstacle for the proof of Theorem 1.2

is the condition in Theorem 1.8 that π1(M) has to be residually finite solvable. It
is well–known that linear groups (and hence in particular hyperbolic 3–manifolds
groups) are virtually residually p for all but finitely many primes p (cf. e.g. [We73,
Theorem 4.7] or [LS03, Window 7, Proposition 9]), in particular they are residually
finite solvable. Thurston conjectured that 3–manifold groups in general are linear (cf.
[Ki, Problem 3.33]), but this is still an open problem. Using the recent proof of the
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geometrization conjecture (cf. e.g. [MT07]) we will prove the following result, which
will be enough for our purposes.

Theorem 1.9. Let N be a closed prime 3–manifold. Then for all but finitely many
primes p there exists a finite cover N ′ of N such that the fundamental group of any
component of the JSJ decomposition of N ′ is residually a p–group.

We can now deduce Theorem 1.2 as follows: We first show in Lemmas 7.1 and 7.2
that it suffices to show Theorem 1.2 for closed prime 3–manifolds. Theorem 1.2 in
that situation now follows from combining Theorems 1.7, 1.8 and 1.9 with a more
technical theorem which allows us to treat the various JSJ pieces separately (cf. The-
orem 6.4).

Added in proof: In a very recent paper ([AF10]) Matthias Aschenbrenner and the
first author showed that any 3–manifold group is virtually residually p. This simpli-
fies the proof of Theorem 1.2 as outlined in [FV10].

This paper is structured as follows. In Section 2 we recall the definition of twisted
Alexander polynomials and some basics regarding completions of groups. In Section
3 we will prove Proposition 1.7 and in Section 4 we give the proof of Theorem 1.8. In
Section 5 we prove Theorem 1.9 and in Section 6 we provide the proof for Theorem
6.4. Finally in Section 7 we complete the proof of Theorem 1.2.

Conventions and notations. Throughout the paper, unless otherwise stated, we
will assume that all manifolds are oriented and connected, and all homology and co-
homology groups have integer coefficients. Furthermore all surfaces are assumed to
be properly embedded and all spaces are compact and connected, unless it says ex-
plicitly otherwise. The derived series of a group G is defined inductively by G(0) = G
and G(n+1) = [G(n), G(n)].

Acknowledgments. We would like to thank Ian Agol, Matthias Aschenbrenner,
Steve Boyer, Paolo Ghiggini, Taehee Kim, Marc Lackenby, Alexander Lubotzky, Kent
Orr, Saul Schleimer, Jeremy van Horn–Morris and Genevieve Walsh for many helpful
comments and conversations. We also would like to thank the referee for suggesting
several improvements to the paper and pointing out various inaccuracies.

2. Preliminaries: Twisted invariants and completions of groups

2.1. Twisted homology. Let X be a CW–complex with base point x0. Let R be a
commutative ring, V a module over R and α : π1(X, x0)→ AutR(V ) a representation.
Let X̃ be the universal cover of X. Note that π1(X, x0) acts on the left on X̃ as
group of deck transformations. The cellular chain groups C∗(X̃) are in a natural way
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right π1(X)–modules, with the right action on C∗(X̃) defined via σ · g := g−1σ, for
σ ∈ C∗(X̃). We can form by tensoring the chain complex C∗(X̃)⊗Z[π1(X,x0)] V , which

is a complex of R–modules. Now define Hi(X;V ) := Hi(C∗(X̃) ⊗Z[π1(X,x0)] V ). The
isomorphism type of the R–module Hi(X;V ) does not depend on the choice of the
base point, in fact it only depends on the homotopy type of X and the isomorphism
type of the representation.

In this paper we will also frequently consider twisted homology for a finitely gener-
ated group Γ; its definition can be reduced to the one above by looking at the twisted
homology of the Eilenberg-Maclane space K(Γ, 1).

The most common type of presentation we consider in this paper is as follows: Let
X be a topological space, α : π1(X)→ G a homomorphism to a group G and H ⊂ G
a subgroup of finite index. Then we get a natural action of π1(X) on AutZ(Z[G/H])
by left–multiplication, which gives rise to the homology groups Hi(X;Z[G/H]).

We will now study the Z[π1(X)]–module Z[G/H] in more detail. We write C :=
α(π1(X)). Consider the set of double cosets C\G/H. By definition g, g′ ∈ G represent
the same equivalence class if and only if there exist c, c′ ∈ C and h, h′ ∈ H such that
cgh = c′g′h′. Note that g1, . . . , gk ∈ G are a complete set of representatives of C\G/H
if and only ifG is the disjoint union of Cg1H, . . . , CgkH. The first part of the following
lemma is an immediate consequence of [Br94, II.5.2.], the second part follows either
from Shapiro’s lemma or a straightforward calculation.

Lemma 2.1. Let g1, . . . , gk ∈ G be a set of representatives for the equivalence classes
C\G/H. For i = 1, . . . , k write C̃i = C ∩ giHg−1

i . We then have the following
isomorphisms of left Z[C]–modules:

Z[G/H] ∼=
k⊕
i=1

Z[C/C̃i].

In particular H0(X;Z[G/H]) is a free abelian group of rank k = |C\G/H|.

2.2. Induced maps on low dimensional homology groups. In this section we
will give criteria when maps between groups give rise to isomorphisms between low
dimensional twisted homology groups. We start out with a study of the induced maps
on 0–th twisted homology groups.

Lemma 2.2. Let φ : A → B be a monomorphism of finitely generated groups. Sup-
pose that B is a subgroup of a group π and let π̃ ⊂ π be a subgroup of finite index.
Let g1, . . . , gk ∈ π be a set of representatives for the equivalence classes B\π/π̃. For
i = 1, . . . , k we write B̃i = B ∩ giπ̃g−1

i and Ãi = φ−1(B̃i). Then

φ∗ : H0(A;Z[π/π̃])→ H0(B;Z[π/π̃])

is an epimorphism of free abelian groups and it is an isomorphism if and only if
φ : A/Ãi → B/B̃i is a bijection for any i.



8 STEFAN FRIEDL AND STEFANO VIDUSSI

Proof. It is well–known that the induced map on 0–th twisted homology groups is
always surjective (cf. e.g. [HS97, Section 6]) and by Lemma 2.1 both groups are free
abelian groups. Now note that without loss of generality we can assume that A ⊂ B
and that φ is the inclusion map. It follows from Lemma 2.1 that H0(B;Z[π/π̃]) is a
free abelian group of rank k = |B\π/π̃|. By the same Lemma we also have

Z[π/π̃] ∼=
k⊕
i=1

Z[B/B̃i]

as left Z[B]–modules and hence also as left Z[A]–modules. By applying Lemma 2.1
to the Z[A]–modules Z[B/B̃i] we see that H0(A;Z[π/π̃]) is a free abelian group of
rank k if and only if |A\B/B̃i| = 1 for any i. It is straightforward to see that this is
equivalent to A/Ãi → B/B̃i being a bijection for any i. �

We will several times make use of the following corollary.

Corollary 2.3. Let φ : A→ B be a monomorphism of finitely generated groups. Let
β : B → G be a homomorphism to a finite group. Then

φ∗ : H0(A;Z[G])→ H0(B;Z[G])
is an epimorphism of free abelian groups and it is an isomorphism if and only if

Im{A→ B → G} = Im{B → G}.

Proof. Let π′ = B × G and π̃′ = B. We can then apply Lemma 2.2 to A′ = A,B′ =
{(g, β(g)) | g ∈ B} ⊂ π′ and φ′(a) = (φ(a), β(φ(a)), a ∈ A′. It is straightforward to
verify that the desired equivalence of statements follows. �

We now turn to the question when group homomorphisms induce isomorphisms of
the 0–th and the first twisted homology groups at the same time.

Lemma 2.4. Let φ : A → B be a monomorphism of finitely generated groups. Sup-
pose that B is a subgroup of a group π and let π̃ ⊂ π be a subgroup of finite index.
Let g1, . . . , gk ∈ π be a set of representatives for the equivalence classes B\π/π̃. For
i = 1, . . . , k we write B̃i = B ∩ giπ̃g−1

i and Ãi = φ−1(B̃i). Then

φ∗ : Hi(A;Z[π/π̃])→ Hi(B;Z[π/π̃])
is an isomorphism for i = 0 and i = 1 if and only if the following two conditions are
satisfied:

(1) φ : A/Ãi → B/B̃i is a bijection for any i,
(2) φ : A/[Ãi, Ãi]→ B/[B̃i, B̃i] is a bijection for any i.

Proof. Without loss of generality we can assume that A ⊂ B and that φ is the
inclusion map. By Lemmas 2.1 and 2.2 it suffices to show for any i the following: If
A/Ãi → B/B̃i is a bijection, then the map H1(A;Z[B/B̃i]) → H1(B;Z[B/B̃i]) is an
isomorphism if and only if φ : A/[Ãi, Ãi]→ B/[B̃i, B̃i] is a bijection.
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Using the above and using Shapiro’s Lemma we can identify

H1(A;Z[B/B̃i]) = H1(A;Z[A/Ãi]) = Ãi/[Ãi, Ãi] and

H1(B;Z[B/B̃i]) = B̃i/[B̃i, B̃i].

Note that A/Ãi, B/B̃i, A/[Ãi, Ãi] and B/[B̃i, B̃i] are in general not groups, but we
can view them as pointed sets. We now consider the following commutative diagram
of exact sequences of pointed sets:

0 // H1(A;Z[B/B̃i]) //

φ

��

A/[Ãi, Ãi]

φ

��

// A/Ãi

φ

��

// 1

0 // H1(B;Z[B/B̃i]) // B/[B̃i, B̃i] // B/B̃i
// 1.

Recall that the map on the right is a bijection. It now follows from the 5–lemma for
exact sequences of pointed sets that the middle map is a bijection if and only if the
left hand map is a bijection. �

We will several times make use of the following corollary which can be deduced
from Lemma 2.4 the same way as Corollary 2.3 is deduced from Lemma 2.2.

Corollary 2.5. Let φ : A→ B be a monomorphism of finitely generated groups, and
assume we are given a homomorphism β : B → G to a finite group G. Then

φ∗ : Hi(A;Z[G])→ Hi(B;Z[G]), i = 0, 1

is an isomorphism if and only if the following two conditions hold:

(1) Im{A→ B → G} = Im{B → G},
(2) φ induces an isomorphism

A/[Ker(β ◦ φ),Ker(β ◦ φ)]→ B/[Ker(β),Ker(β)].

Under extra conditions we can also give a criterion for a map between groups to
induce an isomorphism of second homology groups.

Lemma 2.6. Let φ : A→ B be a homomorphism between two groups such that X =
K(A, 1) and Y = K(B, 1) are finite 2–complexes with vanishing Euler characteristic.
Let β : B → G be a homomorphism to a finite group such that

φ∗ : Hi(A;Z[G])→ Hi(B;Z[G]), i = 0, 1

is an isomorphism, then

φ∗ : H2(A;Z[G])→ H2(B;Z[G])

is also an isomorphism.
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Proof. We can and will view X as a subcomplex of Y . It suffices to show that
H2(Y,X;Z[G]) = 0. Note that our assumption implies that Hi(Y,X;Z[G]) = 0
for i = 0, 1. Now note that H2(Y,X;Z[G]) is a submodule of C2(Y,X;Z[G]), in
particular H2(Y,X;Z[G]) is a free Z–module. We therefore only have to show that
rankH2(Y,X;Z[G]) = 0. Now note that

rankH2(Y,X;Z[G]) = rankH2(Y,X;Z[G])− rankH1(Y,X;Z[G]) + rankH0(Y,X;Z[G])
= |G|χ(Y,X)
= |G|(χ(Y )− χ(X))
= 0.

�

We conclude this section with the following lemma.

Lemma 2.7. Let φ : A→ B be a homomorphism. Let B̂ ⊂ B̃ ⊂ B be two subgroups.
Suppose that B̂ ⊂ B is normal. We write Â := φ−1(B̂) and Ã := φ−1(B̃). Assume
that

φ : A/Â→ B/B̂ and φ : A/[Â, Â]→ B/[B̂, B̂]

are bijections, then

φ : A/Ã→ B/B̃ and φ : A/[Ã, Ã]→ B/[B̃, B̃]

are also bijections.

Proof. In the following let n = 0 or n = 1. Suppose that φ : A/Â(n) → B/B̂(n) is a

bijection. Note that Â(n) ⊂ A and B̂(n) ⊂ B are normal, in particular φ : A/Â(n) →
B/B̂(n) is in fact an isomorphism. We have to show that φ : A/Ã(n) → B/B̃(n) is a
bijection.

Claim. The map φ induces a bijection Ã(n)/Â(n) → B̃(n)/B̂(n).

We write A := A/Â(n), B := B/B̂(n) and we denote by φ : A→ B the induced map

which by assumption is an isomorphism. We denote by H the subgroup B̃/B̂(n) ⊂ B.

Note that φ restricts to isomorphisms φ−1(H) → H and φ−1(H
(n)

) → H
(n)

. Since

φ−1 is an isomorphism it follows that
(
φ−1(H)

)(n)
= φ−1

(
H

(n))
. Now recall that H =

B̃/B̂(n), hence H
(n)

= B̃(n)/B̂(n). We clearly have φ−1(H) = Ã/Â(n) and therefore

φ−1(H)(n) = Ã(n)/Â(n). This shows that the isomorphism φ : φ−1
(
H

(n)) → H
(n)

is

precisely the desired isomorphism Ã(n)/Â(n) → B̃(n)/B̂(n). This concludes the proof
of the claim.
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Now consider the following commutative diagram of short exact sequences of pointed
sets:

1 // Ã(n)/Â(n)

φ

��

// A/Â(n)

φ

��

// A/Ã(n)

φ

��

// 1

1 // B̃(n)/B̂(n) // B/B̂(n) // B/B̃(n) // 1.

The middle vertical map is a bijection by assumption and we just verified that the
vertical map on the left is a bijection. It now follows from the 5–Lemma for exact
sequences of pointed sets that the vertical map on the right is also a bijection. �

2.3. Twisted Alexander polynomials. In this section we are going to recall the
definition of twisted Alexander polynomials. These were introduced, for the case of
knots, by Xiao-Song Lin in 1990 (published in [Li01]), and his definition was later
generalized to 3–manifolds by Wada [Wa94], Kirk–Livingston [KL99] and Cha [Ch03].

Let N be a compact manifold. Let R be a commutative, Noetherian unique factor-
ization domain (in our applications R = Z or R = Fp, the finite field with p elements)
and V a finite free R–module Let α : π1(N) → AutR(V ) a representation and let
ϕ ∈ H1(N ;Z) = Hom(π1(N),Z) a nontrivial element. We write V⊗RR[t±1] =: V [t±1].
Then α and ϕ give rise to a representation α ⊗ ϕ : π1(N)→ AutR[t±1](V [t±1]) as fol-
lows: (

(α⊗ ϕ)(g)
)
(v ⊗ p) := (α(g) · v)⊗ (ϕ(g) · p) = (α(g) · v)⊗ (tϕ(g)p),

where g ∈ π1(N), v ⊗ p ∈ V ⊗R R[t±1] = V [t±1].
Note that N is homotopy equivalent to a finite CW–complex, which, by abuse of

notation, we also denote by N . Then we consider C∗(Ñ) ⊗Z[π1(N)] V [t±1] which is a
complex of finitely generated R[t±1]–modules. Since R[t±1] is Noetherian it follows
that for any i the R[t±1]–module Hi(N ;V [t±1]) is a finitely presented R[t±1]–module.
This means Hi(N ;V [t±1]) has a free R[t±1]–resolution

R[t±1]ri
Si−→ R[t±1]si → Hi(N ;V [t±1])→ 0.

Without loss of generality we can assume that ri ≥ si.

Definition. The i–th twisted Alexander polynomial of (N,α, ϕ) is defined to be the
order of the R[t±1]–module Hi(N ;V [t±1]), i.e. the greatest common divisor (which
exists since R[t±1] is a UFD as well) of the si × si minors of the si × ri–matrix Si. It
is denoted by ∆α

N,ϕ,i ∈ R[t±1].

Note that ∆α
N,ϕ,i ∈ R[t±1] is well–defined up to a unit in R[t±1], i.e. up to an

element of the form rti where r is a unit in R and i ∈ Z. We say that f ∈ R[t±1]
is monic if its top coefficient is a unit in R. Given a nontrivial f =

∑s
i=r ast

i with
ar ̸= 0, as ̸= 0 we write degf = s − r. For f = 0 we write deg(f) = −∞. Note that
deg∆α

N,ϕ,i is well–defined.
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We now write π = π1(N). If we are given a homomorphism α : π → G to a
finite group, then this gives rise to a finite dimensional representation of π, that we
will denote by α : π → AutR(R[G]) as well. In the case that we have a finite index
subgroup π̃ ⊂ π we get a finite dimensional representation π → AutR(R[π/π̃]) given
by left–multiplication. When R = Z, the resulting twisted Alexander polynomials

will be denoted by ∆
π/π̃
N,ϕ,i ∈ Z[t±1], while for R = Fp we will use the notation ∆

π/π̃,p
N,ϕ,i ∈

Fp[t±1]. See [FV08a] for the relation between these polynomials.
Finally, in the case that α : π → GL(1,Z) is the trivial representation we drop the

α from the notation, and in the case that i = 1 we drop the subscript “, 1” from the
notation.

We summarize some of the main properties of twisted Alexander polynomials in
the following lemma. It is a consequence of [FV08a, Lemma 3.3 and 3.4] and [FK06,
Proposition 2.5].

Lemma 2.8. Let N be a 3–manifold with empty or toroidal boundary. Let ϕ ∈
H1(N ;Z) nontrivial and π̃ ⊂ π := π1(N) a finite index subgroup. Denote by ϕπ̃ the
restriction of ϕ to π̃, then the following hold:

(1) ∆
π/π̃
N,ϕ,0 = (1− tdiv ϕπ̃),

(2) if ∆
π/π̃
N,ϕ,1 ̸= 0, then ∆

π/π̃
N,ϕ,2 = (1− tdiv ϕπ̃)b3(N),

(3) ∆
π/π̃
N,ϕ,i = 1 for any i ≥ 3.

Assume we also have a subgroup π′ with π̃ ⊂ π′ ⊂ π. Denote the covering of N
corresponding to π′ by N ′ and denote by ϕ′ the restriction of ϕ to π′, then

∆
π/π̃
N,ϕ,i = ∆

π′/π̃
N ′,ϕ′,i

for any i. Finally note that the statements of the lemma also hold for the polynomial

∆
π/π̃,p
N,ϕ,i ∈ Fp[t±1].

We also recall the following well–known result (cf. e.g. [Tu01]).

Lemma 2.9. Let N be a 3–manifold with empty or toroidal boundary. Let ϕ ∈
H1(N ;Z) nontrivial and π̃ ⊂ π := π1(N) a finite index subgroup. Then given i the
following are equivalent:

(1) ∆
π/π̃
N,ϕ,i ̸= 0,

(2) Hi(N ;Z[π/π̃][t±1]) is Z[t±1]–torsion,
(3) Hi(N ;Q[π/π̃][t±1]) is Q[t±1]–torsion,
(4) the rank of the abelian group Hi(N ;Z[π/π̃][t±1]) is finite.

In fact if any of the four conditions holds, then

deg∆
π/π̃
N,ϕ,i = rankHi(N ;Z[π/π̃][t±1]) = dimHi(N ;Q[π/π̃][t±1]).
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2.4. Completions of groups. Throughout the paper it is convenient to use the
language of completions of groups. Although the proof of Theorem 1.2 does not
explicitly require this terminology, group completions are the natural framework for
these results. We recall here the definitions and some basic facts, we refer to [LS03,
Window 4] and [Wi98, RZ00] for proofs and for more information.

Let C be a variety of groups (cf. [RZ00, p. 20] for the definition). Examples of
varieties of pertinence to this paper are given by any one of the following:

(1) finite groups;
(2) p–groups for a prime p;
(3) the variety FS(n) of finite solvable groups of derived length at most n;
(4) the variety FS of finite solvable groups.

In the following we equip a finitely generated group A with its pro–C topology, this
topology is the translation invariant topology uniquely defined by taking as a funda-
mental system of neighborhoods of the identity the collection of all normal subgroups
of A such that the quotient lies in C. Note that in particular all groups in C are
endowed with the discrete topology.

Given a group A denote by ÂC its pro–C completion, i.e. the inverse limit

ÂC = lim←−A/Ai

where Ai runs through the inverse system determined by the collection of all normal
subgroups of A such that A/Ai ∈ C. Then ÂC, which we can view as a subgroup of the
direct product of all A/Ai, inherits a natural topology. Henceforth by homomorphisms
between groups we will mean a homomorphism which is continuous with respect to the
above topologies. Using the standard convention we refer to the pro–FS completion
of a group as the prosolvable completion.

Note that by the assumption that C is a variety, the pro–C completion is a covariant
functor, i.e. given φ : A→ B we get an induced homomorphism φ̂ : ÂC → B̂C.

A group A is called residually C if for any nontrivial g ∈ A there exists a homo-
morphism α : A → G where G ∈ C such that α(g) ̸= e. It is easily seen that A is

residually C if and only if the map A→ ÂC is injective. In particular, if we are given a
homomorphism φ : A→ B between residually C groups A,B such that φ̂ : ÂC → B̂C
is an injection, then it follows from the following commutative diagram

A

��

φ // B

��

ÂC
φ̂ // B̂C

that φ is injective as well.
The following well–known lemma gives sufficient and necessary conditions for a

homomorphism φ : A→ B to induce an isomorphism of pro–C completions.
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Lemma 2.10. Let C be a variety of groups and assume that there is a homomorphism
φ : A→ B. Then the following are equivalent:

(1) φ̂ : ÂC → B̂C is an isomorphism,
(2) for any G ∈ C the induced map

φ∗ : Hom(B,G)→ Hom(A,G)

is a bijection.

We also note the following well–known lemma.

Lemma 2.11. Let C be an extension–closed variety and let φ : A→ B a homomor-
phism of finitely generated groups which induces an isomorphism of pro–C comple-
tions. Then for any homomorphism β : B → G to a C–group the restriction of φ to
Ker(β ◦ φ)→ Ker(β) induces an isomorphism of pro–C completions.

When a homomorphism φ : A→ B of finitely generated groups induces an isomor-
phism of their pro–C completions, then we have a relation of the twisted homology
with coefficients determined by C–groups. More precisely, we have the following.

Lemma 2.12. Let C be a variety of groups and let φ : A→ B be a homomorphism of
finitely generated groups which induces an isomorphism of pro–C completions. Then
for any homomorphism β : B → G to a C–group the map φ∗ : H0(A;Z[G]) →
H0(B;Z[G]) is an isomorphism. Furthermore, if C is an extension–closed variety
containing all finite abelian groups, the map φ∗ : H1(A;Z[G]) → H1(B;Z[G]) is an
isomorphism.

Proof. Observe that, by Corollary 2.3, the first part of the statement is equivalent to
the assertion that, for any element β ∈ Hom(B,G),

Im{β ◦ φ : A→ G} = Im{β : B → G}.

Without loss of generality, we can reduce the proof of this isomorphism to the case
where β is surjective. Denote α = β ◦ φ ∈ Hom(A,G). Assume to the contrary
that α(A) ( G; then α ∈ Hom(A,α(A)) ⊂ Hom(A,G) and as α(A) ∈ C there exists
by hypothesis a map β′ ∈ Hom(B,α(A)) ⊂ Hom(B,G) such that α = β′ ◦ φ. Now
the two maps β, β′ ∈ Hom(B,G) (that must differ as they have different image)
induce the same map α ∈ Hom(A,G), contradicting the bijectivity of Hom(B,G)
and Hom(A,G).

We now turn to the proof of the second part of the statement. Let β : B → G a
homomorphism to a C–group. Again, without loss of generality, we can assume that
β : B → G is surjective. Note that by the above the homomorphism β ◦ φ : A → G
is surjective as well. We now write B′ = Ker(β) and A′ = Ker(β ◦ φ). By Shapiro’s
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Lemma, we have the commutative diagram

H1(A
′;Z)

∼= //

��

H1(A;Z[G])

��
H1(B

′;Z)
∼= // H1(B;Z[G]).

The claim amounts therefore to showing that the map φ∗ : H1(A
′;Z)→ H1(B

′;Z) is
an isomorphism. As A and B are finitely generated, A′ and B′ are finitely generated
as well. When C is extension closed, and contains all finite abelian groups, Lemma
2.11 asserts that the map φ induces a bijection between Hom(B′,Γ) and Hom(A′,Γ)
for any finite abelian group Γ; the desired isomorphism easily follows. �

3. Monic twisted Alexander polynomials and solvable groups

The aim of this section is to prove Proposition 1.7.

3.1. Preliminary results. We will often make use of the following proposition (cf.
[McM02, Section 4 and Proposition 6.1]).

Proposition 3.1. Let N be a 3–manifold with empty or toroidal boundary and let
ϕ ∈ H1(N ;Z) a primitive class. If ∆N,ϕ ̸= 0, then there exists a connected Thurston
norm minimizing surface Σ dual to ϕ.

Given a connected oriented surface Σ ⊂ N we will adopt the following conventions
for the rest of the paper. We choose a neighborhood Σ × [−1, 1] ⊂ N and write
νΣ = Σ × (−1, 1). Let M := N \ νΣ; we will write Σ± = Σ × {±1} ⊂ ∂M , and we
will denote the inclusion induced maps Σ→ Σ± ⊂M by ι±.

We pick a base point in M and endow N with the same base point. Also, we
pick a base point for Σ and endow Σ± with the corresponding base points. With
these choices made, we will write A = π1(Σ) and B = π1(M). We also pick paths
in M connecting the base point of M with the base points of Σ− and Σ+. We
now have inclusion induced maps ι± : A → B for either inclusion of Σ in M and,
using the constant path, a map π1(M) → π1(N). Under the assumption that Σ is
incompressible (in particular, whenever Σ is Thurston norm minimizing) these maps
are injective. Since M and N have the same base point we can view B canonically
as a subgroup of π1(N).

Before we state the first proposition we have to introduce a few more definitions.
Let N be a 3–manifold with empty or toroidal boundary and let ϕ ∈ H1(N ;Z) a
nontrivial class. Let π̃ ⊂ π be a finite index subgroup. We denote by ϕπ̃ the restriction
of ϕ ∈ H1(N ;Z) = Hom(π,Z) to π̃. Note that ϕπ̃ is necessarily non–trivial. We say

that π̃ ⊂ π has Property (M) if the twisted Alexander polynomial ∆
π/π̃
N,ϕ ∈ Z[t±1] is

monic and if

deg(∆
π/π̃
N,ϕ) = [π : π̃] ∥ϕ∥T + (1 + b3(N))divϕπ̃
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holds. Note that a pair (N, ϕ) satisfies Condition (∗) if and only if Property (M) is
satisfied by all normal subgroups of π1(N).

The following proposition is the key tool for translating information on twisted
Alexander polynomials into information on the maps ι± : A → B. The proposition
is well known in the classical case. In the case of normal subgroups a proof for the
‘only if’ direction of the proposition is given by combining [FV08a, Section 8] with
[FV08b, Section 4].

Proposition 3.2. Let N be a 3–manifold with empty or toroidal boundary with N ̸=
S1×D2, N ̸= S1×S2. Let ϕ ∈ H1(N ;Z) a primitive class which is dual to a connected
Thurston norm minimizing surface Σ. Let π̃ ⊂ π be a finite index subgroup. Then
π̃ has Property (M) if and only if the maps ι± : Hi(A;Z[π/π̃]) → Hi(B;Z[π/π̃]) are
isomorphisms for i = 0, 1.

Proof. Let R = Z or R = Fp with p a prime. We have canonical isomorphisms
Hi(Σ;R[π/π̃]) ∼= Hi(A;R[π/π̃]) and Hi(M ;R[π/π̃]) ∼= Hi(B;R[π/π̃]) for i = 0, 1.
It follows from [FK06, Proposition 3.2] that splitting N along Σ gives rise to the
following Mayer–Vietoris type exact sequence

. . . → H2(N ;R[π/π̃][t±1])

→ H1(A;R[π/π̃])⊗R[t±1]
tι+−ι−−−−−→ H1(B;R[π/π̃])⊗R[t±1] → H1(N ;R[π/π̃][t±1]) →

→ H0(A;R[π/π̃])⊗R[t±1]
tι+−ι−−−−−→ H0(B;R[π/π̃])⊗R[t±1] → H0(N ;R[π/π̃][t±1]) → 0.

which we refer to as the Mayer–Vietoris sequence of (N,Σ) withR[π/π̃][t±1]–coefficients.
First note that by Shapiro’s lemma the groups Hi(A;R[π/π̃]) are the i–th homology
with R–coefficients of a (possibly) disconnected surface. It follows that Hi(A;R[π/π̃])
is a free R–module, in particular the R[t±1]–modules Hi(A;R[π/π̃]) ⊗ R[t±1] are
free R[t±1]–modules. We will several times make use of the observation that if
Hi(N ;R[π/π̃][t±1]) isR[t±1]–torsion, then the mapHi(N ;R[π/π̃][t±1])→ Hi−1(A;R[π/π̃])⊗
R[t±1] is necessarily zero.

We first assume that π̃ has Property (M). Since ∆
π/π̃
N,ϕ ̸= 0 we have that the mod-

ule H1(N ;Z[π/π̃][t±1]) ⊗Z[t±1] Q(t) is trivial. Note that by Lemma 2.9 we have that
H0(N ;Z[π/π̃][t±1]) is also Z[t±1]–torsion. We now consider the Mayer–Vietoris se-
quence of (N,Σ) with Z[π/π̃][t±1]–coefficients. Tensoring the exact sequence with
Q(t) we see that

rankZ(H0(A;Z[π/π̃])) = rankQ(t)(H0(A;Z[π/π̃])⊗Z Q(t))
= rankQ(t)(H0(B;Z[π/π̃])⊗Z Q(t)) = rankZ(H0(B;Z[π/π̃])).

Using this observation and using Lemma 2.2 we see that the maps ι± : H0(A;Z[π/π̃])→
H0(B;Z[π/π̃]) are epimorphism between free abelian groups of the same rank. Hence
the maps are in fact isomorphisms.

In order to prove that the maps ι± : H1(A;Z[π/π̃]) → H1(B;Z[π/π̃]) are isomor-
phisms we first consider the following claim.



TWISTED ALEXANDER POLYNOMIALS DETECT FIBERED 3–MANIFOLDS 17

Claim. H1(A;Z[π/π̃]) and H1(B;Z[π/π̃]) are free abelian groups of the same rank.

Let p be a prime. We consider the Mayer–Vietoris sequence of (N,Σ) with Fp[π/π̃][t±1]–

coefficients. Denote by ∆
π/π̃,p
N,ϕ ∈ Fp[t±1] the twisted Alexander polynomial with co-

efficients in Fp. It follows from ∆
π/π̃
N,ϕ monic and from [FV08a, Proposition 6.1] that

∆
π/π̃,p
N,ϕ ̸= 0 ∈ Fp[t±1]. Furthermore by Lemma 2.8 we have that ∆

π/π̃,p
N,ϕ,2 ̸= 0 ∈ Fp[t±1].

In particular Hi(N ;Fp[π/π̃][t±1]) is Fp[t±1]–torsion for i = 1, 2. It follows from the
fact that Hi(A;Fp[π/π̃]) ⊗Fp Fp[t±1] is a free Fp[t±1]–module and the above observa-
tion that Hi(N ;Fp[π/π̃][t±1]) is Fp[t±1]–torsion for i = 1, 2 that the Mayer–Vietoris
sequence gives rise to the following short exact sequence

0→ H1(A;Fp[π/π̃])⊗Fp[t±1]
tι+−ι−−−−−→ H1(B;Fp[π/π̃])⊗Fp[t±1]→ H1(N ;Fp[π/π̃][t±1])→ 0.

Tensoring with Fp(t) we see that in particularH1(A;Fp[π/π̃]) ∼= H1(B;Fp[π/π̃]) as Fp–
vector spaces. The homology group H0(A;Z[π/π̃]) is Z–torsion free. It follows from
the universal coefficient theorem applied to the complex of Z–modules C∗(Σ̃) ⊗Z[A]
Z[π/π̃] that

H1(A;Z[π/π̃])⊗Z Fp ∼= H1(A;Fp[π/π̃])
for every prime p. The same statement holds for B. Combining our results we see
that H1(A;Z[π/π̃]) ⊗Z Fp and H1(B;Z[π/π̃]) ⊗Z Fp are isomorphic for any prime p.
Since H1(A;Z[π/π̃]) is free abelian it follows that H1(A;Z[π/π̃]) ∼= H1(B;Z[π/π̃]).
This completes the proof of the claim.

In the following we equip the free Z–modules H1(A;Z[π/π̃]) and H1(B;Z[π/π̃])
with a choice of basis. We now study the Mayer–Vietoris sequence for (N,Σ) with
Z[π/π̃][t±1]–coefficients. Using an argument similar to the above we see that it gives
rise to the following exact sequence

H1(A;Z[π/π̃])⊗ Z[t±1]
tι+−ι−−−−−→ H1(B;Z[π/π̃])⊗ Z[t±1]→ H1(N ;Z[π/π̃][t±1])→ 0.

Since H1(A;Z[π/π̃]) and H1(B;Z[π/π̃]) are free abelian groups of the same rank it
follows that the above exact sequence is a resolution of H1(N ;Z[π/π̃][t±1]) by free

Z[t±1]–modules and that ∆
π/π̃
N,ϕ = det(tι+ − ι−). Recall that Property (M) states in

particular that

(1) deg∆
π/π̃
N,ϕ = |π/π̃| ∥ϕ∥T + (1 + b3(N))divϕπ̃.

Recall that we assumed thatN ̸= S1×D2 andN ̸= S1×S2, in particular χ(Σ) ≤ 0 and
therefore −χ(Σ) = ||ϕ||T . Writing bi = rankZ(Hi(Σ;Z[π/π̃])) = rankZ(Hi(A;Z[π/π̃]))
a standard Euler characteristic argument now shows that

−b0 + b1 − b2 = −|π/π̃|χ(Σ) = |π/π̃| · ||ϕ||T .

By [FK06, Lemma 2.2] we have bi = deg∆
π/π̃
N,ϕ,i for i = 0 and i = 2. We also have

deg∆
π/π̃
N,ϕ,0 = divϕπ/π̃ and deg∆

π/π̃
N,ϕ,2 = b3(N)divϕπ̃ by Lemma 2.8. Combining these

facts with (1) we conclude that deg∆
π/π̃
N,ϕ = b1. So we now have deg(det(tι+−ι−)) = b1.
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Since ι+ and ι− are b1× b1 matrices over Z it now follows that det(ι+) equals the top

coefficient of ∆
π/π̃
N,ϕ, which by Property (M) equals ±1. By the symmetry of twisted

Alexander polynomials we have that the bottom coefficient of ∆
π/π̃
N,ϕ also equals ±1, we

deduce that det(ι−) = ±1. This shows that ι+, ι− : H1(A;Z[π/π̃]) → H1(B;Z[π/π̃])
are isomorphisms. We thus showed that if π̃ has Property (M), then the maps ι :
Hi(A;Z[π/π̃])→ Hi(B;Z[π/π̃]) are isomorphisms for i = 0, 1.

Now assume that we are given a finite index subgroup π̃ ⊂ π such that the maps
ι± : Hi(A;Z[π/π̃]) → Hi(B;Z[π/π̃]) are isomorphisms for i = 0, 1. It follows from
the assumption that ι± : H0(A;Z[π/π̃])→ H0(B;Z[π/π̃]) are isomorphisms that the
map

H0(A;Z[π/π̃])⊗ Z[t±1]
tι+−ι−−−−−→ H0(B;Z[π/π̃])

is injective. In particular the Mayer–Vietoris sequence of (N,Σ) with Z[π/π̃][t±1]–
coefficients gives rise to the following exact sequence

H1(A;Z[π/π̃])⊗ Z[t±1]
tι+−ι−−−−−→ H1(B;Z[π/π̃])⊗ Z[t±1]→ H1(N ;Z[π/π̃][t±1])→ 0.

As aboveH1(A;Z[π/π̃]) is a free abelian group and by our assumptionH1(B;Z[π/π̃]) ∼=
H1(A;Z[π/π̃]) is also free abelian. In particular the above exact sequence defines a
presentation for H1(N ;Z[π/π̃][t±1]) and we deduce that

∆
π/π̃
N,ϕ = det(tι+ − ι−).

Since ι− and ι+ are isomorphisms it follows that ∆
π/π̃
N,ϕ is monic of degree b1. An

argument similar to the above now shows that

deg∆
π/π̃
N,ϕ = |π/π̃| ∥ϕ∥T + (1 + b3(N))divϕπ̃.

�
3.2. Finite solvable quotients. Given a solvable group S we denote by ℓ(S) its
derived length, i.e. the length of the shortest decomposition into abelian groups. Put
differently, ℓ(S) is the minimal number such that S(ℓ(S)) = {e}. Note that ℓ(S) = 0 if
and only if S = {e}.

For sake of comprehension, we briefly recall the notation. We are considering a
3–manifold N with empty or toroidal boundary, and we fix a primitive class ϕ ∈
H1(N ;Z). We denote by Σ a connected Thurston norm minimizing surface dual to
ϕ, and write A = π1(Σ) and B = π1(M) (with M = N \ νΣ) and we denote the
two inclusion induced maps A → B with ι±. We also write π = π1(N). Note that
π = ⟨B, t|ι−(A) = tι+(A)t

−1⟩.
Given n ∈ N ∪ {0} we denote by S(n) the statement that for any finite solvable

group S with ℓ(S) ≤ n we have that for ι = ι−, ι+ the map

ι∗ : Hom(B,S)→ Hom(A, S)

is a bijection. This is equivalent by Lemma 2.10 to assert that ι : A → B induces
an isomorphism of pro–FS(n) completions. Recall that by Corollary 2.3 and Lemma
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2.12 statement S(n) implies then that for any homomorphism β : B → S to a finite
solvable group S with ℓ(S) ≤ n we have Im{β ◦ ι : A→ B → S} = Im{β : B → S}.

Our goal is to show that S(n) holds for all n. We will show this by induction
on n. For the induction argument we use the following auxiliary statement: Given
n ∈ N∪{0} we denote by H(n) the statement that for any homomorphism β : B → S
where S is finite solvable with ℓ(S) ≤ n we have that for ι = ι−, ι+ the homomorphism

ι∗ : H1(A;Z[S])→ H1(B;Z[S])
is an isomorphism.

In the next two sections we will prove the following two propositions:

Proposition 3.3. If H(n) and S(n) hold, then S(n+ 1) holds as well.

Proposition 3.4. Assume that (N, ϕ) satisfies Condition (∗). If S(n) holds, then
H(n) holds as well.

We can now prove the following corollary, which amounts to Proposition 1.7.

Corollary 3.5. Assume that (N,ϕ) satisfies Condition (∗) and that ϕ is primitive.
Let Σ ⊂ N be a connected Thurston norm minimizing surface dual to ϕ and let
ι : A→ B be one of the two injections. Then for any finite solvable group G the map

Hom(B,G)
ι∗−→ Hom(A,G)

is a bijection, i.e. ι : A→ B induces an isomorphism of prosolvable completions.

Proof. The condition S(0) holds by fiat. It follows from Proposition 3.2 applied to
the trivial group that if (N,ϕ) satisfies Condition (∗), then ι± : H1(A;Z)→ H1(B;Z)
are isomorphisms, i.e. H(0) holds. The combination of Propositions 3.3 and 3.4 then
shows that H(n) and S(n) hold for all n. The corollary is now immediate. �

3.3. Proof of Proposition 3.3. In this section we will prove Proposition 3.3. Let
ι = ι− or ι = ι+. Since S(n) holds we only have to consider the case of G a finite
solvable group with ℓ(G) = n+ 1. By definition G fits into a short exact sequence

1→ I → G→ S → 1,

where I = G(n) is finite abelian and S = G/G(n) finite solvable with ℓ(S) = n.
We will construct a map Φ : Hom(A,G) → Hom(B,G) which is an inverse to

ι∗ : Hom(B,G)→ Hom(A,G). Let α : A→ G be a homomorphism. Without loss of

generality we can assume that α is an epimorphism. Denote A
α−→ G→ S by α′ and

denote the map A → A/Ker(α′)(1) by ρ. Note that α sends Ker(α′) to the abelian
group I, hence α vanishes on Ker(α′)(1). This shows that α factors through ρ, in
particular α = ψ ◦ ρ for some ψ : A/Ker(α′)(1) → G.

Recall that ℓ(S) = n, therefore by S(n) we have that α′ : A → S equals ι∗(β′)
for some β′ : B → S. By Lemma 2.12, S(n) guarantees that i∗ : H0(A;Z[S]) →
H0(B;Z[S]) is an isomorphism; on the other handH(n) asserts that i∗ : H1(A;Z[S])→
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H1(B;Z[S]) is an isomorphism as well. By Corollary 2.5 this implies that ι induces
an isomorphism

ι : A/Ker(α′)(1)
∼=−→ B/Ker(β′)(1).

The various homomorphisms can be summarized in the following commutative dia-
gram:

A

α

��

ι //

α′

&&MMMMMMMMMMMMM

ρ

��:
::

::
::

::
::

::
::

::
B

β′

xxqqqqqqqqqqqqq

����
��

��
��

��
��

��
��

�

S
= // S

A/Ker(α′)(1)
∼=
ι

//

ψyyyyrrrrrrrrrr

α′
OOOO

B/Ker(β′)(1)

β′
OOOO

G.

Now we define Φ(α) ∈ Hom(B,G) to be the homomorphism

B → B/Ker(β′)(1)
ι−1

−−→ A/Ker(α′)(1)
ψ−→ G.

It is now straightforward to check that Φ and ι∗ are inverses to each other.

3.4. Proof of Proposition 3.4. In this section we will prove Proposition 3.4. So
let β : B → S be a homomorphism to a finite solvable group S with ℓ(S) ≤ n. If
β extends to π1(N), H(n) will follow immediately from Proposition 3.2. In general
β though will not extend; however using S(n) we will construct a homomorphism
π = ⟨B, t|ι−(A) = tι+(A)t

−1⟩ → G to a finite group G ‘which contains β : B → S’ to
get the required isomorphism.

We first need some notation. Given groups C and H we define

C(H) =
∩

γ∈Hom(C,H)

Ker(γ).

We summarize a few properties of C(H) ⊂ C in the following lemma.

Lemma 3.6. Let C be a finitely generated group. Then the subgroup C(H) ⊂ C has
the following properties:

(1) C(H) ⊂ C is normal and characteristic.
(2) If H is finite and solvable, then C/C(H) is finite and solvable with ℓ(C/C(H)) ≤

ℓ(H).

Proof. Statement (1) is immediate. To prove the rest, consider the injection

C/C(H) = C/
∩

γ∈Hom(C,H)

Ker(γ)→
∏

γ∈Hom(C,H)

C/Ker(γ).
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If H is finite, then Hom(C,H) is a finite set (since C is finitely generated), hence
C/C(H) is finite. If H is furthermore solvable, then for any γ ∈ Hom(C,H) the
groups C/Ker(γ) are solvable, hence C/C(H) is solvable as well. Moreover for any
γ ∈ Hom(C,H) we have ℓ(C/Ker(γ)) ≤ ℓ(H). We therefore get

ℓ(C/C(H)) ≤ max
γ∈Hom(C,H)

ℓ(C/Ker(γ)) ≤ ℓ(H).

�

We will also need the following group homomorphism extension lemma.

Lemma 3.7. Assume that S(n) holds and that S is a finite solvable group with
ℓ(S) ≤ n. Let β : B → S be a homomorphism.

Then there exists a k ∈ N, a semidirect product Z/knB/B(S) and a homomorphism

π = ⟨B, t|ι−(A) = tι+(A)t
−1⟩ → Z/k nB/B(S)

which extends B → B/B(S), i.e. we have the following commutative diagram:

1 // B/B(S) // Z/k nB/B(S) // Z/k // 1

B

OO

// π.

OO

Proof. Assume that S(n) holds and that S is a finite solvable group with ℓ(S) ≤ n.
Let β : B → S be a homomorphism. We denote the projection map B → B/B(S)
by ρ.

Claim. There exists an automorphism γ : B/B(S) → B/B(S) such that ρ(ι+(a)) =
γ(ρ(ι−(a))) for all a ∈ A.

Let ι = ι− or ι = ι+. By Lemma 3.6 we know that B/B(S) is finite solvable with
ℓ(B/B(S)) ≤ n. It follows from S(n) that

ι∗ : A/Ker{A ι−→ B
ρ−→ B/B(S)} → B/B(S)

is an isomorphism. On the other hand it is also a straightforward consequence of
S(n) that

Ker{A ι−→ B
ρ−→ B/B(S)} = A(S).

Combining these two observations we see that ι gives rise to an isomorphism ι∗ :
A/A(S)→ B/B(S). We now take γ := ι+∗ ◦ (ι−∗)

−1. This concludes the proof of the
claim.

We now write H = B/B(S). It is now straightforward to verify that

π = ⟨B, t|ι−(A) = tι+(A)t
−1⟩ → Z nH = ⟨H, t|H = tγ(H)t−1⟩
b 7→ ρ(b), b ∈ B,
t 7→ t
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defines a homomorphism. Since H = B/B(S) is a finite group it follows that the
automorphism γ has finite order k, in particular the projection map Z nB/B(S)→
Z/knB/B(S) is a homomorphism. Clearly the resulting homomorphism π → Z/kn
B/B(S) has all the required properties. �

We are in position now to prove Proposition 3.4.

Proof of Proposition 3.4. Recall that we assume that (N, ϕ) satisfies Condition (∗)
and that S(n) holds. We have to show that H(n) holds as well. So let β : B → S be
a homomorphism to a finite solvable group S with ℓ(S) ≤ n. We have to show that
for ι = ι−, ι+ the homomorphism

ι∗ : H1(A;Z[S])→ H1(B;Z[S])

is an isomorphism. Without loss of generality we can assume that β is surjective.
Recall that S(n) implies that β ◦ ι : A→ S is surjective as well.

We now apply Lemma 3.7 to find a homomorphism

π = ⟨B, t|ι−(A) = tι+(A)t
−1⟩ → Z/k nB/B(S)

which extends B → B/B(S). Note that
(2)

Ker{γ : B → π → Z/k nB/B(S)} = Ker{B → B/B(S)}
Ker{γ ◦ ι : A→ B → π → Z/k nB/B(S)} = Ker{ι : A→ B → B/B(S)}.

We let
B̂ = Ker{B → B/B(S)},
B̃ = Ker(β).

Clearly B̂ ⊂ B̃ by the definition of B/B(S). We also write Â = ι−1(B̂) and Ã =
ι−1(B̃). We now consider the epimorphism π1(N) = π → Z/k n B/B(S). By
Condition (∗), Equation (2), Proposition 3.2 and Corollaries 2.5 and 2.5 it follows
that the maps

ι : A/Â→ B/B̂ and ι : A/[Â, Â]→ B/[B̂, B̂]

are isomorphisms. It now follows from Lemma 2.7 and Corollary 2.5 that the maps

ι : A/Ã→ B/B̃ and ι : A/[Ã, Ã]→ B/[B̃, B̃]

are also isomorphisms. �

4. A product criterion

In this section we will apply a theorem of Agol to prove a criterion for a manifold
to be a product, which complements Proposition 1.7.

In order to state our result, we first recall the definition of a sutured manifold (cf.
[Ga83, Definition 2.6] or [CC03, p. 364]). A sutured manifold (M,γ) is a compact
oriented 3–manifold M together with a set γ ⊂ ∂M of pairwise disjoint annuli A(γ)
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and tori T (γ). Furthermore, the structure of a sutured manifold consists of the
following choices of orientations:

(1) For each A ∈ A(γ) a choice of a simple closed, oriented curve in A (called
suture) such that A is the tubular neighborhood of the curve, and

(2) the choice of an orientation for each component of ∂M \ A(γ).
The orientations must be compatible, i.e. the orientation of the components of ∂M \
A(γ) must be coherent with the orientations of the sutures.

Given a sutured manifold (M,γ) we define R+(γ) as the components of ∂M \ γ
where the orientation agrees with the orientation induced by M on ∂M , and R−(γ)

as the components of ∂M \ γ where the two orientations disagree. We define also
R(γ) = R+(γ) ∪R−(γ).

A sutured manifold (M,γ) is called taut if M is irreducible and if each component
of R(γ) is incompressible and Thurston norm–minimizing in H2(M,γ;Z) (we refer to
[Sc89] for information regarding the Thurston norm on sutured manifolds).

An example of a taut sutured manifold is given by taking an oriented surface Σ and
considering Σ× I with sutures given by the annuli ∂Σ× I. The sutures are oriented
by the orientation of ∂Σ. We can pick orientations such that R−(γ) = Σ × 0 and
R+(γ) = Σ×1. If a sutured manifold (M,γ) is diffeomorphic (as a sutured manifold)
to such a product then we say that (M,γ) is a product sutured manifold.

Another example of a taut sutured manifold comes from considering an oriented
incompressible Thurston norm minimizing surface Σ ⊂ N in an irreducible 3–manifold
with empty or toroidal boundary. We let (M,γ) = (N \ νΣ, ∂N ∩ (N \ νΣ)). With
appropriate orientations (M,γ) is a taut sutured manifold such that R−(γ) = Σ− and
R+(γ) = Σ+.

The following theorem immediately implies Theorem 1.8.

Theorem 4.1. Assume we have a taut sutured manifold (M,γ) which has the follow-
ing properties:

(1) R±(γ) consist of one component Σ± each, and the inclusion induced maps
π1(Σ

±)→ π1(M) give rise to isomorphisms of the respective prosolvable com-
pletions,

(2) π1(M) is residually finite solvable,

then (M,γ) is a product sutured manifold.

The key ingredient to the proof of Theorem 4.1 is a result of Agol’s [Ag08] which
we recall in Section 4.1. We will then provide the proof for Theorem 4.1 in Sections
4.2 and 4.3.

Remark. (1) It is an immediate consequence of ‘peripheral subgroup separability’
[LN91] that the theorem holds under the assumption that the inclusion induced maps
π1(Σ

±) → π1(M) give rise to isomorphisms of the respective profinite completions.
It is not clear how the approach of [LN91] can be adapted to prove Theorem 4.1.
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(2) It is also interesting to compare Theorem 4.1 with a result of Grothendieck. In
[Gr70, Section 3.1] Grothendieck proves that if φ : A → B is a homomorphism
between finitely presented, residually finite groups which induces an isomorphism of
the profinite completions, and if A is arithmetic (e.g. a surface group), then φ is
an isomorphism. It is an interesting question whether Theorem 4.1 can be proved
using purely group theoretic arguments. We refer to [AHKS07] for more information
regarding this question.

4.1. Agol’s theorem. Before we can state Agol’s result we have to introduce more
definitions. A group G is called residually finite Q–solvable or RFRS if there exists
a filtration of groups G = G0 ⊃ G1 ⊃ G2 . . . such that the following hold:

(1) ∩iGi = {1},
(2) Gi is a normal, finite index subgroup of G for any i,
(3) for any i the map Gi → Gi/Gi+1 factors through Gi → H1(Gi;Z)/torsion.

Note that RFRS groups are in particular residually finite solvable, but the RFRS
condition is considerably stronger than being residually finite solvable. The notion
of an RFRS group was introduced by Agol [Ag08], we refer to Agol’s paper for more
information on RFRS groups.

Given a sutured manifold (M,γ) the double DMγ is defined to be the double of M
along R(γ), i.e. DMγ = M ∪R(γ) M . Note that the annuli A(γ) give rise to toroidal
boundary components of DMγ. We denote by r : DMγ → M the retraction map
given by ‘folding’ the two copies of M along R(γ).

We are now in a position to state Agol’s result. The theorem as stated here is
clearly implicit in the proof of [Ag08, Theorem 6.1].

Theorem 4.2. Let (M,γ) be a connected, taut sutured manifold such that π1(M)
satisfies property RFRS. Write W = DMγ. Then there exists an epimorphism

α : π1(M)→ S to a finite solvable group, such that in the covering p : W̃ → W cor-
responding to α ◦ r∗ : π1(W )→ S the pull back of the class [R−(γ)] ∈ H2(W,∂W ;Z)
lies on the closure of the cone over a fibered face of W̃ .

Note that [R+(γ)] = ±[R−(γ)] in H2(W,∂W ;Z), i.e. [R−(γ)] is a fibered class

if and only if [R+(γ)] is a fibered class. In case that W̃ has vanishing Thurston
norm, then we adopt the usual convention that by the fibered face we actually mean

H1(W̃ ,R) \ {0}.

4.2. Proof of Theorem 4.1. From now on assume we have a taut sutured manifold
(M,γ) with the following properties:

(1) R±(γ) consist of one component Σ± each and the inclusion induced maps
π1(Σ

±)→ π1(M) give rise to isomorphisms of the respective prosolvable com-
pletions.

(2) π1(M) is residually finite solvable.
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Since Theorem 4.1 is obvious in the case M = S2 × [0, 1] we will henceforth assume
that M ̸= S2 × [0, 1].

Our main tool in proving Theorem 4.1 is Theorem 4.2. In order to apply it we need
the following claim.

Claim. The group π1(M) is RFRS.

Proof. By assumption the group π1(M) is residually finite solvable. This means that
we can find a sequence π1(M) = B0 ⊃ B1 ⊃ B2 . . . with the following properties:

(1) ∩iBi = {1},
(2) Bi is a normal, finite index subgroup of π1(M) for any i,
(3) for any i the map Bi → Bi/Bi+1 factors through Bi → H1(Bi;Z).

It remains to show that Bi → Bi/Bi+1 factors through H1(Bi;Z)/torsion. In fact
we claim that H1(Bi;Z) is torsion–free. Indeed, first note that by Shapiro’s lemma
H1(Bi;Z) ∼= H1(B;Z[B/Bi]) ∼= H1(M ;Z[B/Bi]). Furthermore, by Lemma 2.12 we
have

H1(Σ
−;Z[B/Bi])

∼=−→ H1(M ;Z[B/Bi]),

but the first group is clearly torsion–free as it is the homology of a finite cover of a
surface. �

In the following we write W = DMγ. By the above claim we can apply Theorem
4.2 which says that there exists an epimorphism α : π1(M) → S to a finite solvable

group, such that in the covering p : W̃ → W corresponding to α ◦ r∗ : π1(W ) → S
the pull back of the class [R−(γ)] = [Σ−] ∈ H2(W,∂W ;Z) lies on the closure of the

cone over of a fibered face of W̃ .
Note that we can view W̃ as the double of the cover (M̃, γ̃) of (M,γ) induced by

α : π1(M) → S. We summarize the main properties of Σ̃± and W̃ in the following
lemma.

Lemma 4.3. (1) Σ̃± := p−1(Σ±) are connected surfaces,

(2) the inclusion induced maps π1(Σ̃
±) → π1(M̃) give rise to isomorphisms of

prosolvable completions,

(3) if Σ̃− is the fiber of a fibration W̃ = DM̃γ̃ → S1, then M̃ is a product over

Σ̃−,

(4) M is a product over Σ− if and only if M̃ is a product over Σ̃−.

Proof. First note that it follows from Lemma 2.12 and Corollary 2.3 and the as-
sumption that π1(Σ

±) → π1(M) give rise to isomorphisms of the respective pro-
solvable completions that π1(Σ

±) → π1(M) → S is surjective, i.e. the preimages
Σ̃± := p−1(Σ±) are connected. The second claim follows from Lemma 2.11 since the
maps π1(Σ

±)→ π1(M) give rise to isomorphisms of their prosolvable completions.
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For the third claim consider the following commutative diagram

π1(Σ̃
−)

$$IIIIIIIII
// π1(W̃ \ νΣ̃−)

π1(M̃).

88qqqqqqqqqq

If Σ̃− is the fiber of a fibrationDM̃γ̃ → S1, then the top map in the above commutative

diagram is an isomorphism. We can think of W̃ \ νΣ̃− as M̃ ∪Σ̃+ M̃ . It is now clear
that the lower two maps are injective. But then the lower left map also has to be

an isomorphism, i.e. M̃ is a product over Σ̃−. The last claim is well–known, it is for
example a consequence of [He76, Theorem 10.5]. �

Using the above lemma it is now clear that the following lemma implies Theorem
4.1.

Lemma 4.4. Let (M,γ) be a taut sutured manifold such that R±(γ) consist of one
component Σ± each. Assume the following hold:

(A) The inclusion induced maps π1(Σ
±) → π1(M) give rise to isomorphisms of

the respective prosolvable completions.
(B) The class in H1(DMγ;Z) represented by the surface Σ− lies on the closure of

the cone over a fibered face of DMγ.

Then Σ− is the fiber of a fibration DMγ → S1.

In the following we write W = DMγ. Note that we have a canonical involution τ
on W with fix point set R(γ). From now on we think of W = DMγ as M ∪R(γ) τ(M).

Our main tool in the proof of Lemma 4.4 will be the interplay between the Thurston
norm and McMullen’s Alexander norm [McM02]. Recall that given a 3–manifold V
with b1(V ) ≥ 2 the Alexander norm || − ||A : H1(V ;R) → R≥0 has the following
properties:

(a) The Alexander norm ball is dual to the Newton polyhedron defined by the
symmetrized Alexander polynomial ∆V ∈ Z[H1(V ;Z)/torsion].

(b) The Alexander norm ball is a (possibly noncompact) polyhedron with finitely
many faces.

(c) For any ϕ ∈ H1(V ;R) we have ||ϕ||A ≤ ||ϕ||T , and equality holds for fibered
classes.

(d) Let C ⊂ H1(V ;R) be a fibered cone, i.e. the cone on a fibered face of the
Thurston norm ball, then C is contained in the cone on the interior of a
top–dimensional face of the Alexander norm ball.

(e) Let C1, C2 ⊂ H1(V ;R) be fibered cones which are contained in the same cone
on the interior of a top–dimensional face of the Alexander norm ball, then
C1 = C2.
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Our assumption that the induced maps π1(Σ
±)→ π1(M) give rise to isomorphisms

of the respective prosolvable completions implies thatW = DMγ ‘looks algebraically’
the same as Σ− × S1. More precisely, we have the following lemma which we will
prove in Section 4.3.

Lemma 4.5. Let (M,γ) be a taut sutured manifold with the property that R±(γ)
consist of one component Σ± each. Assume that (A) holds. Then the following hold:

(1) There exists an isomorphism

f : R⊕H1(Σ
−, ∂Σ−;R)→ H2(W,∂W ;R)

such that f(1, 0) = [Σ−] and such that τ(f(r, h)) = f(r,−h).
(2) The class ϕ = PD(Σ−) ∈ H1(W ;Z) lies in the cone D on the interior of a

top–dimensional face of the Alexander norm ball.

Note that (1) implies in particular that b1(W ) ≥ 2. Assuming this lemma we are
now in a position to prove Lemma 4.4.

Proof of Lemma 4.4. Let (M,γ) be a taut sutured manifold with the property that
R±(γ) consist of one component Σ± each. Assume that (A) and (B) hold.

By Lemma 4.5 there exists a cone D ⊂ H1(W ;R) on the interior of a top–
dimensional face of the Alexander norm ball which contains ϕ = PD([Σ−]). We
denote the map

R⊕H1(Σ
−, ∂Σ−;R) f−→ H2(W,∂W ;R) PD−−→ H1(W ;R)

by Φ.
By (B) we can find h ∈ H1(Σ

−, ∂Σ−;R) such that Φ(1, h) and Φ(1,−h) lie in D
and such that Φ(1, h) lies in the cone C on a fibered face F of the Thurston norm
ball. Note that the τ∗ : H1(W ;R) → H1(W ;R) sends fibered classes to fibered
classes and preserves the Thurston norm. In particular τ(Φ(1, h)) = Φ(1,−h) is
fibered as well and it lies in τ(C) which is the cone on the fibered face τ(F ) of the
Thurston norm ball. Recall that τ(Φ(1, h)) = Φ(1,−h) lies in D, it follows from
Property (d) of the Alexander norm that τ(C) ⊂ D. We then use (e) to conclude
that C = τ(C). In particular Φ(1, h) and Φ(1,−h) lie in C. Since C is convex it
follows that ϕ = Φ(1, 0) ∈ C i.e. ϕ is a fiber class. �

4.3. Proof of Lemma 4.5. By Lemma 2.12 the following lemma is just the first
statement of Lemma 4.5.

Lemma 4.6. Let (M,γ) be a taut sutured manifold with the property that R±(γ)
consist of one component Σ± each. Assume that ι± : H1(Σ

±;R) → H1(M ;R) are
isomorphisms. Then there exists an isomorphism

f : R⊕H1(Σ
−, ∂Σ−;R)→ H2(W,∂W ;R)

such that f(1, 0) = [Σ−] and such that τ(f(b, c)) = f(b,−c).
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Proof. We start out with the following two claims.

Claim. M has no toroidal sutures.

Proof. Denote the toroidal sutures by T1, . . . , Tn. Recall that for any compact 3–
manifold X we have b1(∂X) ≤ 2b1(X). In our case it is easy to see that we have
b1(∂M) = b1(Σ

−) + b1(Σ
+) +

∑n
i=1 b1(Ti) = 2b1(Σ) + 2n. On the other hand, since

H1(Σ
±;R) → H1(M ;R) are isomorphisms we have b1(M) = b1(Σ). It now follows

from b1(∂M) ≤ 2b1(M) that n = 0. �

Claim. The inclusion induced maps H1(Σ
±, ∂Σ±;R) → H1(M,A(γ);R) are isomor-

phisms.

Now consider the following commutative diagram:

H1(∂Σ
−;R)

��

// H1(Σ
−;R)
∼=

��

// H1(Σ
−, ∂Σ−;R)

��

// H0(∂Σ
−;R) //

��

H0(Σ
−;R)
∼=

��
H1(A(γ);R) // H1(M ;R) // H1(M,A(γ);R) // H0(A(γ);R) // H0(M ;R).

Note that by the compatibility condition in the definition of sutured manifolds we have
that for each component A of A(γ) the subset ∂A ∩ Σ− = A ∩ ∂Σ− ⊂ ∂A consists
of exactly one boundary component of A. This implies that the maps Hi(∂Σ

− ∩
A;R) → Hi(A;R) are isomorphisms. The claim now follows immediately from the
above commutative diagram and from the assumption that H1(Σ

±;R) → H1(M ;R)
are isomorphisms.

We now define

g : H1(Σ
−, ∂Σ−;R)→ H2(W,∂W ;R)

as follows: given an element c ∈ H1(Σ
−, ∂Σ−;R) represent it by a chain c−, since

the maps H1(Σ
±, ∂Σ±;R) → H1(M,A(γ);R) are isomorphisms we can find a chain

c+ in Σ+ such that [c−] = [c+] ∈ H2(M,A(γ);R). Now let d be a 2–chain in M
such that ∂d = c− ∪ −c+. Then define g(c) to be the element in H2(W,∂W ;R)
represented by the closed 2–chain d ∪ −τ(d). It is easy to verify that g is a well–
defined homomorphism. Note that ∂W = A(γ) ∪ τ(A(γ)) since W has no toroidal
sutures. It is now straightforward to check, using a Mayer–Vietoris sequence, that
the map

f : R ⊕ H1(Σ
−, ∂Σ−;R) → H2(W,∂W ;R)

( b , c ) 7→ b[Σ−] + g(c)

is an isomorphism. Clearly f(1, 0) = [Σ−]. It is also easy to verify that τ(f(b, c)) =
f(b,−c). This shows that f has all the required properties. �

The second statement of Lemma 4.5 is more intricate. We start with the following
lemma which in light of [Gr70], [BG04] and [AHKS07] has perhaps some independent
interest.
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Lemma 4.7. Let φ : A → B be a homomorphism of finitely generated metabelian
groups which induces an isomorphism of prosolvable completions. Then φ is also an
isomorphism.

Proof. We first show that A→ B is an injection. We consider the following commu-
tative diagram

A

��

// B

��

ÂFS
// B̂FS .

The vertical maps are injections since metabelian groups are residually finite (cf.
[Ha59]). The bottom map is an isomorphism by assumption. It now follows that the
top map is an injection.

Now suppose that the homomorphism A → B is not surjective. We identify

H1(A;Z) = H1(A;Z)
∼=−→ H1(B;Z) = H1(B;Z) via φ and refer to the group as H.

Let g′ ∈ B \ φ(A). We can pick an a ∈ A such that φ(a) and g′ represent the same
element in H. Let g = φ(a)−1g′. Then g represents the trivial element in H but g is
also an element in B \ φ(A).

We will show that there exists a homomorphism α : B → G to a finite metabelian
group such that α separates g from φ(A), i.e. such that α(g) ̸∈ α(φ(A)). This then
immediately contradicts, via Lemma 2.10, our assumption that φ : A → B induces
an isomorphism of prosolvable completions. Our construction of finding such α builds
on some ideas of the proof of [LN91, Theorem 1].

We write B1 = B2 = B. We denote the inclusion maps A→ Bi = B by φi. We let
C = B1 ∗AB2. It is straightforward to see that the homomorphisms Bi → C give rise
to an isomorphism H1(Bi;Z) = H → H1(C;Z). Denote by

s : B1 ∗A B2 → B1 ∗A B2

the switching map, i.e. the map induced by s(b) = b ∈ B2 for b ∈ B1 and s(b) = b ∈ B1

for b ∈ B2. Note that s acts as the identity on A ⊂ C. Also note that s descends to
a map C/C(2) → C/C(2) which we also denote by s. We now view g as an element
in B1 and hence as an element in C. Note that the fact that g represents the trivial
element inH implies that g represents an element in C(1)/C(2). We will first show that
s(g) ̸= g ∈ C/C(2). Consider the following commutative diagram of exact sequences

H1(A;Z[H]) → H1(B1;Z[H])⊕H1(B2;Z[H]) → H1(C;Z[H]) → 0

↓∼= ↓∼= ↓∼= ↓

A(1) → B
(1)
1 ×B

(1)
2 → C(1)/C(2) → 0.

h 7→ (φ1(h), φ2(h)
−1)

Since g ∈ B(1)
1 \ φ(A(1)) it follows that (g, g−1) does not lie in the image of A(1) in

B
(1)
1 ×B

(1)
2 . It therefore follows from the above diagram that gs(g)−1 ̸= e ∈ C(1)/C(2).
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Note that C/C(2) is metabelian, and hence by [Ha59] residually finite. We can
therefore find an epimorphism α : C/C(2) → G onto a finite group G (which is
necessarily metabelian) such that α(gs(g)−1) ̸= e. Now consider β : C/C(2) → G×G
given by β(h) = (α(h), α(s(h))). Then clearly β(g) ̸∈ β(A) ⊂ {(g, g) | g ∈ G}. The
restriction of β to B = B1 now clearly separates g from A. �
Corollary 4.8. Let φ : A → B be a homomorphism of finitely generated groups
which induces an isomorphism of prosolvable completions. Then the induced map
A/A(2) → B/B(2) is an isomorphism.

Proof. It follows immediately from Lemma 2.10 that φ induces an isomorphism of the
prosolvable completions of the metabelian groups A/A(2) and B/B(2). It now follows
from Lemma 4.7 that the induced map A/A(2) → B/B(2) is an isomorphism. �

We now turn to the proof of the second claim of Lemma 4.5. For the remainder of
this section let (M,γ) be a taut sutured manifold with the property that R±(γ) consist
of one component Σ± each. We assume that (A) holds, i.e. the inclusion induced maps
π1(Σ

±)→ π1(M) give rise to isomorphisms of the respective prosolvable completions.
We have to show that the class ϕ = PD(Σ−) ∈ H1(W ;Z) lies in the cone on the
interior of a top–dimensional face of the Alexander norm ball.

For the remainder of the section we pick a base point x− ∈ Σ− and a base point
x+ ∈ Σ+. We endow W,M and τ(M) with the base point x−. Furthermore we pick
a path γ in M connecting x− ∈ Σ− to x+ ∈ Σ+.

Our goal is to understand the Alexander norm ball of W . In order to do this we
first have to study H = H1(W ;Z). Let t denote the element in H represented by
the closed path γ∪−τ(γ). It follows from a straightforward Mayer–Vietoris sequence
argument that we have an isomorphism

f : H1(Σ
−;Z) ⊕ ⟨t⟩ → H1(W ;Z)

( b , tk ) 7→ ι(b) + kt.

In particular H is torsion–free. We write F = H1(Σ
−;Z). We use f to identify H

with F × ⟨t⟩ and to identify Z[H] with Z[F ][t±1].
We now consider the Alexander module H1(W ;Z[H]). Recall that H1(W ;Z[H])

is the homology of the covering of W corresponding to π1(W ) → H1(W ;Z) = H
together with the Z[H]–module structure given by deck transformations.

In the following claim we compareW with Σ×S1. We also write F = H1(Σ;Z) and
we can identifyH1(Σ×S1;Z) withH = F×⟨t⟩. In particular we identifyH1(Σ×S1;Z)
with H1(W ;Z). With these identifications we can now state the following lemma.

Lemma 4.9. The Z[H]–module H1(W ;Z[H]) is isomorphic to the Z[H]–module H1(Σ×
S1;Z[H]).

Proof. In the following we identify Σ with Σ− ⊂ W . We denote by X the result
of gluing M and τ(M) along Σ = Σ−. Note that we have two canonical maps
r : Σ+ → M → X and s : Σ+ → τ(M) → X. We furthermore denote the canonical
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inclusion maps Σ → M,Σ → τ(M) and Σ = Σ− → X by i. Throughout this proof
we denote by i, r, s the induced maps on solvable quotients as well.

Claim A. The map i : π1(Σ)→ π1(X) gives rise to an isomorphism π1(Σ)/π1(Σ)
(2) →

π1(X)/π1(X)(2).

In the following let M ′ be either M or τ(M). Recall that we assume that π1(Σ)→
π1(M

′) gives rise to isomorphisms of the prosolvable completions. It now follows
from Corollary 4.8 that π1(Σ)/π1(Σ)

(2) → π1(M
′/π1(M

′)(2) is an isomorphism. Now
let g : π1(X) = π1(M ∪Σ τ(M))→ π1(M)) be the ‘folding map’. Note that

π1(Σ)/π1(Σ)
(2) i−→ π1(X)/π1(X)(2)

g−→ π1(M)/π1(M)(2)
∼=←− π1(Σ)/π1(Σ)

(2)

is the identity map. In particular π1(Σ)/π1(Σ)
(2) i−→ π1(X)/π1(X)(2) is injective. On

the other hand it follows from the van Kampen theorem that

π1(X) = π1(M) ∗π1(Σ) π1(M
′),

in particular π1(X)/π1(X)(2) is generated by the images of π1(M) and π1(τ(M)) in
π1(X)/π1(X)(2). But it follows immediately from the following commutative diagram

π1(Σ) //

''NNNNNNNNNNN

//

π1(M
′)

vvnnnnnnnnnnnn

oo

π1(Σ)/π1(Σ)
(2)

∼= //

((RRRRRRRRRRRRR
π1(M

′)/π1(M
′)(2)

uukkkkkkkkkkkkkk

π1(X)/π1(X)(2)

that image of π1(Σ)/π1(Σ)
(2) in π1(X)/π1(X)(2) also generates the group. This con-

cludes the proof of the claim A.

Claim B. For any g ∈ π1(Σ+)/π1(Σ
+) we have

r(g) = s(g) ∈ π1(X)/π1(X)(2)

Denote by τ : X = M ∪Σ τ(M) → X = M ∪Σ τ(M) the map given by switching
the two copies of M . Clearly r(g) = τ∗(s(g)). But τ∗ acts trivially on image of
π1(Σ)/π1(Σ)

(2) in π1(X)/π1(X)(2). By the above claim this means that τ∗ acts trivially
on π1(X)/π1(X)(2). This concludes the proof of the claim.

We now view W as the result of gluing the two copies of Σ+ in ∂X by the identity
map. First note that by the van Kampen theorem we have

π1(W ) = ⟨t, π1(X) | ts(g)t−1 = r(g), g ∈ π1(Σ+)⟩.
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Note that by Claim B the obvious assignments give rise to a well–defined map

π1(W ) = ⟨t, π1(X) | ts(g)t−1 = r(g), g ∈ π1(Σ+)⟩ → ⟨t⟩ × π1(X)/π1(X)(2).

Since π1(X)/π1(X)(2) is metabelian this map descends to a map

Φ : ⟨t, π1(X) | ts(g)t−1 = r(g), g ∈ π1(Σ+)⟩/(. . . )(2) → ⟨t⟩ × π1(X)/π1(X)(2).

Claim C. The map Φ : π1(W )/π1(W )(2) → ⟨t⟩ × π1(X)/π1(X)(2) is an isomorphism.

We denote by Ψ the following map:

⟨t⟩ × π1(X)/π1(X)(2) → ⟨t, π1(X)/π1(X)(2) | ts(g)t−1 = r(g), g ∈ π1(Σ+)⟩
= ⟨t, π1(X) | ts(g)t−1 = r(g), g ∈ π1(Σ+), π1(X)(2)⟩
→ ⟨t, π1(X) | ts(g)t−1 = r(g), g ∈ π1(Σ+)⟩/(. . . )(2).

Clearly Ψ is surjective and we have Φ ◦Ψ = id. It follows that Φ is an isomorphism.
This concludes the proof of the claim.

Finally note that we have a canonical isomorphism

π1(Σ× S1)/π1(Σ× S1)(2) = ⟨t⟩ × π1(Σ)/π1(Σ)(2).

It now follows from the above discussion that we have an isomorphism

π1(W )/π1(W )(2)
Φ−→ ⟨t⟩ × π1(X)/π1(X)(2)

∼= ⟨t⟩ × π1(Σ)/π1(Σ)(2)
= π1(Σ× S1)/π1(Σ× S1)(2)

which we again denote by Φ. Note that under the abelianization the map Φ descends
to the above identification H1(Σ×S1;Z) = H = H1(W ;Z). We now get the following
commutative diagram of exact sequences

0 // H1(W ;Z[H])

��

// π1(W )/π1(W )(2)

Φ
��

// H := H1(W ;Z)

=

��

// 0

0 // H1(Σ× S1;Z[H]) // π1(Σ× S1)/π1(Σ× S1)(2) // H1(Σ× S1;Z) // 0.

The lemma is now immediate. �

We are now ready to prove the second statement of Lemma 4.5. Note that the
isomorphism of Alexander modules implies that the Alexander polynomials ∆W and
∆Σ×S1 agree in Z[H]. It is well–known that ∆Σ×S1 = (t− 1)||ϕ||T ∈ Z[H] = Z[F ][t±1].
Recall that we are interested in ϕ = PD([Σ]), and that ϕ as an element in Hom(H,Z) =
Hom(F×⟨t⟩),Z) is given by ϕ(t) = 1, ϕ|F = 0. It is now obvious from ∆W = ∆Σ×S1 =
(t−1)||ϕ||T that ϕ lies in the interior of a top–dimensional face of the Alexander norm
ball of W . This concludes the proof of the second statement of Lemma 4.5 modulo
the proof of the claim.
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5. Residual properties of 3–manifold groups

Proposition 1.7 and Theorem 4.1 are almost enough to deduce Theorem 1.2, but we
still have to deal with the assumption in Theorem 4.1 that π1(W ) has to be residually
finite solvable.

Using well–known arguments (see Section 7 for details) one can easily see that
Proposition 1.7 and Theorem 4.1 imply Theorem 1.2 for 3–manifolds N which have
virtually residually finite solvable fundamental groups. Here we say that a group π
has virtually a property if a finite index subgroup of π has this property. It seems
reasonable to conjecture that all 3–manifold groups are virtually residually finite
solvable. For example linear groups (and hence fundamental groups of hyperbolic
3–manifolds and Seifert fibered spaces) are virtually residually finite solvable and
(virtually) fibered 3–manifold groups are easily seen to be (virtually) residually finite
solvable.

It is not known though whether all 3–manifold groups are linear. In the case of
3–manifolds with non–trivial JSJ decomposition we therefore use a slightly different
route to deduce Theorem 1.2 from Proposition 1.7 and Theorem 4.1. In Lemmas 7.1
and 7.2 we first show that it suffices in the proof of Theorem 1.2 to consider closed
prime 3–manifolds. In this section we will show that given a closed prime 3–manifold
N , there exists a finite cover N ′ of N such that all pieces of the JSJ decomposition
of N ′ have residually finite solvable fundamental groups (Theorem 5.1). Finally in
Section 6 we will prove a result which allows us in the proof of Theorem 1.2 to work
with each JSJ piece separately (Theorem 6.4).

5.1. Statement of the theorem. We first recall some definitions. Let p be a prime.
A p–group is a group such that the order of the group is a power of p. Note that
any p–group is in particular finite solvable. A group π is called residually p if for any
nontrivial g ∈ π there exists a homomorphism α : π → P to a p–group such that
α(g) ̸= e. A residually p group is evidently also residually finite solvable.

For the reader’s convenience we recall the statement of Theorem 1.9 which we will
prove in this section.

Theorem 5.1. Let N be a closed irreducible 3–manifold. Then for all but finitely
many primes p there exists a finite cover N ′ of N such that the fundamental group of
any JSJ component of N ′ is residually p.

Remark. (1) Note that this theorem relies on the geometrization results of Thurston
and Perelman.

(2) A slight modification of our proof shows that the statement of the theorem
also holds for irreducible 3–manifolds with toroidal boundary.

5.2. Proof of Theorem 5.1. The proof of the theorem combines in a straightforward
way ideas from the proof that finitely generated subgroups of GL(n,C) are virtually
residually p for all but finitely many primes p (cf. e.g. [We73, Theorem 4.7] or [LS03,
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Window 7, Proposition 9]) with ideas from the proof that 3–manifold groups are
residually finite (cf. [He87]). Since all technical results can be found in either [We73]
or [He87], and in order to save space, we only give an outline of the proof by referring
heavily to [We73] and [He87].

In the following recall that given a positive integer n there exists a unique charac-
teristic subgroup of Z⊕ Z = π1(torus) of index n

2, namely n(Z⊕ Z).
Definition 5.2. Let N be a 3-manifold which is either closed or has toroidal bound-
ary. Given a prime p we say that a subgroup Γ ⊂ π1(N) has Property (p) if it satisfies
the following two conditions:

(1) Γ is residually p, and
(2) for any torus T ⊂ ∂N the group Γ∩π1(T ) is the unique characteristic subgroup

of π1(T ) of index p
2.

Proposition 5.3. Let N be a compact orientable 3-manifold with empty or toroidal
boundary such that the interior has a complete hyperbolic structure of finite volume.
Then for all but finitely many primes p there exists a finite index subgroup of π1(N)
which has Property (p).

Proof. This theorem is essentially a straightforward combination of [He87, Lemma 4.1]
with the proof that finitely generated linear groups are virtually residually p. We will
use throughout the notation of the proof of [He87, Lemma 4.1]. First we pick a finitely
generated subring A ⊂ C as in [He87, Proof of Lemma 4.1]. In particular we can
assume that π1(N) ⊂ SL(2, A) where A ⊂ C. We pick a prime p and a maximal ideal
m ⊂ A as in [He87, p. 391]. We then have in particular that char(A/m) = p. For i ≥ 1
we now let Γi = Ker{π1(N)→ SL(2, A/mi)×H/piH} where H = H1(N ;Z)/torsion.
We claim that Γ1 ⊂ π1(N) is a finite index subgroup which has Property (p). Clearly
Γ1 is of finite index in π1(N) and by [He87, p. 391] the subgroup Γ1 also satisfies
condition (2). The proof that finitely generated linear groups are virtually residually p
(cf. [We73, Theorem 4.7] or [LS03, Window 7, Proposition 9]) then shows immediately
that all the groups Γ1/Γi, i ≥ 1 are p–groups and that ∩∞

i=1Γi = {1}. In particular Γ1

is residually p. �
Proposition 5.4. Let N be a Seifert fibered space. Then for all but finitely many
primes p, there exists a finite index subgroup of π1(N) which has Property (p).

Proof. If N is a closed Seifert fibered space, then it is well–known that π1(N) is linear,
and the proposition immediately follows from the fact that linear groups are virtually
residually p for almost all primes p.

Now consider the case that N has boundary. It is well–known (cf. for example
[Ha01, Lemma 6] and see also [He87, p. 391]) that there exists a finite cover q : N ′ →
N with the following two properties:

(1) N ′ = S1 × F for some surface F ,
(2) for any torus T ⊂ ∂N the group π1(N

′) ∩ π1(T ) is the unique characteristic
subgroup of π1(T ) of index p

2.
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We now write Γ := π1(N
′) ⊂ π1(N). The group Γ is residually p since free groups

are residually p. It now follows from (2) that Γ has the required properties. �
We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1. Let N be a closed irreducible 3–manifold. Let N1, . . . , Nr be
the JSJ components. For all but finitely many primes p we can by Propositions 5.3
and 5.4 find finite index subgroups Γi ⊂ π1(Ni) for i = 1, . . . , r which have Property
(p). We denote by N ′

i the cover of Ni corresponding to Γi.
By the second condition of Property (p) the intersections of the subgroups Γi, i =

1, . . . , r with the fundamental group of any torus of the JSJ decomposition coincide.
We can therefore appeal to [He87, Theorem 2.2] to find a finite cover N ′ of N such
that any component in the JSJ decomposition of N ′ is homeomorphic to some N ′

i , i ∈
{1, . . . , r}. Recall that π1(N ′

i) = Γi is residually p for any i, hence the cover N ′ of N
has the desired properties. �

6. The JSJ decomposition and prosolvable completions

Let N be a closed 3–manifold and let ϕ ∈ H1(N ;Z) primitive with ||ϕ||T > 0. If
(N,ϕ) fibers, and if Σ ⊂ N is a surface dual to ϕ which is the fiber of the fibration,
then it is well–known (cf. e.g. [EN85]) that the JSJ tori of N cut the product
N \ νΣ ∼= Σ× [0, 1] into smaller products.

If (N, ϕ) satisfies Condition (∗), and if Σ ⊂ N is a connected Thurston norm
minimizing surface dual to ϕ, then we will see in Lemma 6.3 and Theorem 6.4 that
the JSJ tori of N cut the manifold N \νΣ into smaller pieces which look like products
‘on the level of prosolvable completions’. This result will play an important role in
the proof of Theorem 1.2 as it allows us to work with each JSJ piece separately.

6.1. The statement of the theorem. Throughout this section let N be a closed
irreducible 3–manifold. Furthermore let ϕ ∈ H1(N ;Z) be a primitive class which is
dual to a connected Thurston norm minimizing surface. (Recall that by Proposition
3.1 this is in particular the case if (N, ϕ) satisfies Condition (∗).) Finally we assume
that ||ϕ||T > 0.

We now fix once and for all embedded tori T1, . . . , Tr ⊂ N which give the JSJ
decomposition of N . (Recall that the T1, . . . , Tr are unique up to reordering and
isotopy.)

We will make several times use of the following well–known observations:

Lemma 6.1. Let Σ ⊂ N be an incompressible surface in general position with the JSJ
torus Ti, i ∈ 1, . . . , r. Let c be a component of Σ∩Ti. Then c represents a non–trivial
element in π1(Ti) if and only if c represents a non–trivial element in π1(Σ).

Lemma 6.2. There exists an embedded Thurston norm minimizing surface Σ ⊂ N
dual to ϕ with the following three properties:

(1) Σ is connected,
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(2) the tori Ti, i = 1, . . . , r and the surface Σ are in general position,
(3) any component of Σ∩Ti, i = 1, . . . , r represents a nontrivial element in π1(Ti).

Now, among all surfaces dual to ϕ satisfying the properties of the lemma we pick
a surface Σ which minimizes the number

∑r
i=1 b0(Σ ∩ Ti).

Given Σ we can and will fix a tubular neighborhood Σ× [−1, 1] ⊂ N such that the
tori Ti, i = 1, . . . , r and the surface Σ × t are in general position for any t ∈ [−1, 1].
We from now on write M = N \ Σ× (−1, 1) and Σ± = Σ×±1.

We denote the components ofN cut along T1, . . . , Tr byN1, . . . , Ns. Let {A1, . . . , Am}
be the set of components of the intersection of the tori T1∪· · ·∪Tr withM . Note that
the surfaces Ai ⊂M, i = 1, . . . ,m are properly embedded since we assumed that the
tori Ti and the surfaces Σ± = Σ×±1 are in general position. We also let {M1, . . . ,Mn}
be the set of components of the intersection of Ni with M for i = 1, . . . , s. Put differ-
ently, M1, . . . ,Mn are the components of M cut along A1, . . . , Am. For i = 1, . . . , n
we furthermore write Σ±

i =Mi ∩ Σ±.
Let i ∈ {1, . . . ,m}. If the surface Ai is an annulus, then we say that Ai connects

Σ− and Σ+ if one boundary component of Ai lies on Σ− and the other boundary
component lies on Σ+. The following lemma will be proved in Section 6.2

Lemma 6.3. Assume that (N, ϕ) satisfies Condition (∗), then for i = 1, . . . ,m the
surface Ai is an annulus which connects Σ− and Σ+.

We can now formulate the main theorem of this section. The proof will be given
in Sections 6.2, 6.3 and 6.4.

Theorem 6.4. Assume that for i = 1, . . . ,m the surface Ai is an annulus which
connects Σ− and Σ+. Furthermore assume that the inclusion induced maps π1(Σ

±)→
π1(M) give rise to an isomorphism of prosolvable completions. Then for i = 1, . . . , n
the following hold:

(1) The surfaces Σ±
i are connected.

(2) Given j ∈ {1, . . . , n} with Mi ⊂ Nj the inclusion induced map π1(Mi) →
π1(Nj) is injective.

(3) The inclusion induced maps π1(Σ
±
i ) → π1(Mi) give rise to isomorphisms of

the respective prosolvable completions.

We would like to remind the reader that at the beginning of the section we made
the assumption that ||ϕ||T > 0.

6.2. Proof of Lemma 6.3. We first recall the following theorem from an earlier
paper (cf. [FV08b, Theorem 5.2]).

Theorem 6.5. Let Y be a closed irreducible 3–manifold. Let ψ ∈ H1(Y ;Z) a prim-
itive class. Assume that for any epimorphism α : π1(Y ) → G onto a finite group
G the twisted Alexander polynomial ∆α

Y,ψ ∈ Z[t±1] is nonzero. Let T ⊂ Y be an in-

compressible embedded torus. Then either ψ|T ∈ H1(T ;Z) is nonzero, or (Y, ψ) fibers
over S1 with fiber T .
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With this theorem we are now able to prove Lemma 6.3. We use the notation from
the previous section. So assume that (N, ϕ) is a pair which satisfies Condition (∗). In
particular we have that ∆α

N,ϕ ̸= 0 for any epimorphism α : π1(N) → G onto a finite
group G. We can therefore apply Theorem 6.5 to the tori T1, . . . , Tr ⊂ N to conclude
that either (N,ϕ) fibers over S1 with toroidal fiber, or ϕ|Ti ∈ H1(Ti;Z) is nonzero for
i = 1, . . . , r. Recall that we assumed that ||ϕ||T > 0, we therefore only have to deal
with the latter case. From ϕ|Ti ∈ H1(Ti;Z) nonzero we obtain that Σ (which is dual
to ϕ) necessarily intersects Ti in at least one curve which is homologically essential on
Ti. In fact by our assumption on Σ and T1, . . . , Tr any intersection curve Σ∩ Ti ⊂ Ti
is essential, in particular the components of Ti cut along Σ are indeed annuli.

In order to prove Lemma 6.3 it now remains to show that each of the annuli Ai
connects Σ− and Σ+. So assume there exists an i ∈ {1, . . . ,m} such that the annulus
Ai does not connect Σ− and Σ+. Without loss of generality we can assume that
Σ+ ∩Ai = ∅. We equip Ai with an orientation. Denote the two oriented components
of ∂Ai by c and −d. By our assumption c and d lie in Σ−, and they cobound the
annulus Ai ⊂M .

Now recall that by Proposition 3.2 our assumption that (N,ϕ) satisfies Condition
(∗) implies in particular that H1(Σ

−;Z) → H1(M ;Z) is an isomorphism. Note that
c, d are homologous in M via the annulus A := Ai, and since H1(Σ

−;Z)→ H1(M ;Z)
is an isomorphism we deduce that c and d are homologous in Σ− as well. Since Σ−

is closed we can now find two subsurfaces Σ1,Σ2 ⊂ Σ− such that ∂Σ1 = −c ∪ d, and
such that (with the orientations induced from Σ−) the following hold: Σ1 ∪ Σ2 = Σ,
∂Σ2 = c∪−d and Σ1∩Σ2 = c∪d. Note that possibly one of Σ1 or Σ2 is disconnected.

Claim. The surfaces Σ1 = Σ1 ∪ A and Σ2 = Σ2 ∪ −A are closed, orientable and
connected. Furthermore, there exists a j ∈ {1, 2} such that genus(Σj) = genus(Σ)
and such that Σj is homologous to Σ in N .

Proof. It is clear that Σ1 and Σ2 are closed, orientable and connected. We give
Σk, k = 1, 2 the orientation which restricts to the orientation of Σk. We therefore
only have to show the second claim.

Recall that Condition (∗) implies that the inclusion induced maps Hj(Σ
−;Z) →

Hj(M ;Z), j = 0, 1 are isomorphisms. It follows from Lemma 2.6 that we also have
an isomorphism H2(Σ

−;Z) → H2(M ;Z), in particular H2(M ;Z) is generated by
[Σ−]. Now note that Σ1 and Σ2 represent elements in H2(M ;Z). We can write
[Σk] = lk[Σ

−], k = 1, 2 for some lk ∈ Z. Note that [Σ1] + [Σ2] = [Σ−], i.e. l1 + l2 = 1.
Now let k ∈ {1, . . . , r} such that Ai ⊂ Tk. Recall that we assume that any compo-

nent of Σ∩Tk represents a nontrivial element in π1(Tk). By Lemma 6.1 any component
of Σ ∩ Tk therefore also represents a nontrivial element in π1(Σ). In particular c and
d do not bound disks on Σ, which in turn implies that χ(Σk) ≤ 0, k = 1, 2. It follows
that

(3) −χ(Σk) = −χ((Σ− \ Σ3−k) ∪ A) = −χ(Σ) + χ(Σ3−k) ≤ −χ(Σ), k = 1, 2.
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On the other hand, by the linearity of the Thurston norm and the genus minimality
of Σ we have

(4) −χ(Σk) ≥ −|lk|χ(Σ), k = 1, 2.

Now recall our assumption that χ(Σ) = ||ϕ||T > 0. It follows that l1 + l2 = 1 and
the inequalities (3) and (4) can only be satisfied if there exists a j with lj = 1 and
χ(Σj) = χ(Σ). (Note that necessarily l3−j = 0 and Σ3−j is a torus.) �

Note that there exists a proper isotopy of A ⊂M to an annulus A′ ⊂M such that
∂A′ lies entirely in Σj and such that A′ is disjoint from all the other Aj, j = 1, . . . , r.
We then let Σ′

j ⊂ Σj be the subsurface of Σj such that ∂Σ′
j = ∂A′. Clearly Σ′ := Σ′

j∪
−A′ is isotopic to Σj ∪−A, in particular by the claim Σ′ is a closed connected surface
homologous to Σ in N with genus(Σ′) = genus(Σ) which satisfies all the properties
listed in Lemma 6.2. On the other hand we evidently have b0(Σ

′ ∩ Tj) ≤ b0(Σ) − 2.
Since we did not create any new intersections we in fact have

∑r
i=1 b0(Σ

′ ∩ Ti) <∑r
i=1 b0(Σ∩ Ti). But this contradicts the minimality of

∑r
i=1 b0(Σ∩ Ti) in our choice

of the surface Σ. We therefore showed that the assumption that Ai does not connect
Σ− and Σ+ leads to a contradiction. This concludes the proof of Lemma 6.3.

6.3. Preliminaries on the components M1, . . . ,Mn. We continue with the nota-
tion from the previous sections. Using Lemma 6.3 we can now prove the following
lemma, which in particular implies the first statement of Theorem 6.4.

Lemma 6.6. Assume that the inclusion induced maps π1(Σ
±)→ π1(M) give rise to

isomorphisms of the prosolvable completions. Let i ∈ {1, . . . , n}. Then the following
hold:

(1) The surfaces Σ±
i are connected.

(2) For any homomorphism α : π1(M)→ S to a finite solvable group the inclusion
maps induce isomorphisms

Hj(Σ
±
i ;Z[S])→ Hj(Mi;Z[S])

for j = 0, 1.

Proof. We first consider statement (1). Recall that M1, . . . ,Mn are the components
of M split along A1, . . . , Am. We therefore get the following commutative diagram of
Mayer–Vietoris sequences

. . . //
m⊕
k=1

Hj(Ak ∩ Σ±;Z) //

��

n⊕
l=1

Hj(Ml ∩ Σ±;Z)

��

// Hj(Σ
±;Z)

��

// . . .

. . . //
m⊕
k=1

Hj(Ak;Z) //
n⊕
l=1

Hj(Ml;Z) // Hj(M ;Z) // . . . .
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Note that the vertical homomorphisms on the left are isomorphisms since by Lemma
6.3 for any i = 1, . . . ,m the Ai is an annulus which connects Σ− and Σ+, i.e. Ai is
a product on Ai ∩ Σ±. Also note that the vertical homomorphisms on the right are
isomorphisms for j = 0, 1 by Proposition 3.2 and for j = 2 by Lemma 2.6. We can now
appeal to the 5–lemma to deduce that the middle homomorphisms are isomorphisms
as well. But for any j the middle homomorphism is a direct sum of homomorphisms,
it therefore follows in particular that the maps Hj(Σ

±
i ;Z) → Hj(Mi;Z), j = 0, 1 are

isomorphisms for any i ∈ {1, . . . , n}. In particular b0(Σ
±
i ) = b0(Mi) = 1, i.e. the

surfaces Σ±
i are connected.

We now prove statement (2). Let α : π1(M) → S be a homomorphism to a finite
solvable group. Recall that by Lemmas 2.12 and 2.6 we have that the inclusion
induced maps Hj(Σ

±;Z[S]) → Hj(M ;Z[S]) are isomorphisms for j = 0, 1, 2. It now
follows from the commutative diagram of Mayer–Vietoris sequences as above, but
with Z[S]–coefficients (cf. [FK06] for details) that

Hj(Σ
±
i ;Z[S])→ Hj(Mi;Z[S])

is an isomorphism for any i ∈ {1, . . . , n} and j = 0, 1.
�

The following lemma in particular implies the second statement of Theorem 6.4.

Lemma 6.7. For any pair (i, j) such that Mi ⊂ Nj we have a commutative diagram
of injective maps as follows:

π1(Σ
±
i )

��

// π1(Mi)

��

// π1(Nj)

��
π1(Σ

±) // π1(M) // π1(N).

Proof. First note that since Σ is incompressible we know that the two bottom maps
are injective. Furthermore recall thatNj is a JSJ component ofN , i.e. a component of
the result of cutting N along incompressible tori, hence π1(Nj)→ π1(N) is injective.

Claim. For any k ∈ {1, . . . , n} the maps π1(Σ
±
k )→ π1(Σ) are injective.

Let c be a component of Σ ∩ Tl for some l ∈ {1, . . . , r}. Recall that by our choice
of tori T1, . . . , Tr the curve c represents a nontrivial element in π1(Tl). By Lemma
6.1 the curve c also represents a nontrivial element in π1(Σ). In particular none of
the components of Σ± \ Σ±

k are disks and therefore the maps π1(Σ
±
k ) → π1(Σ

±) are
injective. This concludes the proof of the claim.

Now let K = {k ∈ {1, . . . , n} |Mk ⊂ Nj}. It follows from the claim and the above
commutative diagram that for any k ∈ K the inclusion induced map π1(Σk)→ π1(Nj)
is injective, i.e. for any k ∈ K the surface Σk ⊂ Nj is incompressible. Since Mi is a
component of cutting Nj along the incompressible surfaces Σ−

k ⊂ Nj, k ∈ K we have
that π1(Mi)→ π1(Nj) is injective.
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By commutativity of the above diagram we now obtain that all other maps are
injective as well. �
6.4. The conclusion of the proof of Theorem 6.4. In this section we will finally
prove the third statement of Theorem 6.4. The main ingredient in the proof is the
following result.

Proposition 6.8. Let Σ be a closed surface and Σ′ ⊂ Σ a connected subsurface such
that π1(Σ

′) → π1(Σ) is injective. Let α : π1(Σ
′) → S be a homomorphism to a

finite solvable group. Then there exists a homomorphism to a finite solvable group
β : π1(Σ) → T and a homomorphism π : T ′ := Im{π1(Σ′) → T} → S such that the
following diagram commutes:

π1(Σ
′)

α

�� ""FFFFFFFF
// π1(Σ)

β

��
S T ′πoo // T.

Put differently, the prosolvable topology on π1(Σ
′) agrees with the topology on

π1(Σ
′) induced from the prosolvable topology on π1(Σ).

Remark. Note that in general H1(Σ
′;Z)→ H1(Σ;Z) is not injective, even if π1(Σ

′)→
π1(Σ) is an injection. In particular in general a homomorphism π1(Σ

′) → S to an
abelian group will not extend to a homomorphism from π1(Σ) to an abelian group.
This shows that in general we can not take T = S or T of the same solvability length
as S in the above proposition.

Proof. The statement of the proposition is trivial if Σ′ = Σ, we will therefore hence-
forth only consider the case that Σ′ ̸= Σ. Let α : π1(Σ

′) → S be a homomorphism
to a finite solvable group. It suffices to show that there exists a homomorphism
β : π1(Σ)→ T to a finite solvable group such that Ker(β) ∩ π1(Σ′) ⊂ Ker(α).

Denote by Σ1, . . . ,Σl the components of Σ \ Σ′. Note that the condition that
π1(Σ

′) → π1(Σ) is injective is equivalent to saying that none of the subsurfaces
Σ1, . . . ,Σl is a disk.

It is straightforward to see that for each j = 1, . . . , l we can find an annulus
Aj ∈ int(Σj) such that (Σ′ ∪ Σj) \ Aj is still connected.

Now let Σ′′ = Σ \ ∪j∈JAj. Clearly Σ′′ is a connected surface with boundary. By
assumption π1(Σ

′)→ π1(Σ) is injective. Since π1(Σ
′)→ π1(Σ) factors through π1(Σ

′′)
we see that Σ′ is a subsurface of Σ′′ such that π1(Σ

′)→ π1(Σ
′′) is injective. Since Σ′′

is a surface with boundary (contrary to Σ) this implies that π1(Σ
′) is in fact a free

factor of π1(Σ
′′), i.e. we have an isomorphism γ : π1(Σ

′′)
∼=−→ π1(Σ

′) ∗ F where F is

a free group such that the map π1(Σ
′′)

γ−→ π1(Σ
′) ∗ F → π1(Σ

′) splits the inclusion
induced map π1(Σ

′)→ π1(Σ
′′).

We now write π := π1(Σ
′′) and we denote by α′′ the projection map π → π/π(S)

(We refer to Section 3.4 for the definition and the properties of the characteristic
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Figure 1. Surface Σ′ ⊂ Σ with annuli Ai ⊂ Σi, i = 1, 2, 3.

subgroup π(S) of π). We can extend α : π1(Σ
′) → S to π1(Σ

′′)
γ−→ π1(Σ

′) ∗ F →
π1(Σ

′)
α−→ S. It follows immediately that Ker(α′′) ∩ π1(Σ′) ⊂ Ker(α).

We will now extend α′′ : π1(Σ
′′) → π/π(S) to a homomorphism β : π1(Σ) →

Z/nn π/π(S) where 1 ∈ Z/n acts in an appropriate way on π/π(S). In order to do
this we will first study the relationship between π1(Σ

′′) and π1(Σ).
Evidently Σ = Σ′′ ∪ ∪ki=1Ai. We pick an orientation for Σ and give A1, . . . , Ak

the induced orientations. We write ∂Ai = −ai ∪ bi, i = 1, . . . , k (see Figure 2). We

2a
b

2

a
1

1b
’’

a b
3

3

Figure 2. Surface Σ′′ ⊂ Σ with oriented boundary curves ai, bi.

now pick a base point for Σ′′. We can find based curves c1, . . . , cl, d1, . . . , dl and paths
from the base point to the curves a1, . . . , ak, b1, . . . , bk (and from now on we do not
distinguish in the notation between curves and based curves) such that

π = ⟨a1, . . . , ak, b1, . . . , bk, c1, . . . , cl, d1, . . . , dl | a1 . . . akb−1
k . . . b−1

1 = [cl, dl] . . . [c1, d1]⟩.
(See Figure 3 for an illustration.) By the van Kampen theorem we then have

π1(Σ) = ⟨π1(Σ′′), t1, . . . , tk | tiait−1
i = bi, i = 1, . . . , k⟩.

Claim. There exists an automorphism φ : π → π such that φ(ai) = bi and φ(bi) = ai
for any i ∈ {1, . . . , k}.

Let Γ be the free group generated by ai, bi, i = 1, . . . , k and ci, di, i = 1, . . . , l
and consider the isomorphism φ : Γ → Γ defined by φ(ai) = bi, φ(bi) = ai, i =
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Figure 3. Surface Σ′′ ⊂ Σ with oriented based curves ai, bi, ci, di.

1, . . . , k and φ(ci) = dl+1−i, φ(di) = cl+1−i, i = 1, . . . , l. In the following we write
w = [cl, dl] . . . [c1, d1] and we write r = a1 . . . akb

−1
k . . . b−1

1 · [c1, d1]−1 . . . [cl, dl]
−1 for the

relator. Note that we have a canonical isomorphism π ∼= Γ/⟨⟨r⟩⟩. We calculate

φ(r) = φ
(
a1 . . . akb

−1
k . . . b−1

1 · [c1, d1]−1 . . . [cl, dl]
−1
)

= b1 . . . bka
−1
k . . . a−1

1 · [dl, cl]−1 . . . [d1, c1]
−1

= b1 . . . bka
−1
k . . . a−1

1 · [cl, dl] . . . [c1, d1]
= w−1[cl, dl] . . . [c1, d1]b1 . . . bka

−1
k . . . a−1

1 w

= w−1r−1w.

This shows that φ restricts to an automorphism of the subgroup of Γ normally gen-
erated by the relator r. In particular φ descends to an automorphism of π. This
concludes the proof of the claim.

Recall that π(S) is a characteristic subgroup of π, hence φ : π → π descends to an
automorphism π/π(S) → π/π(S) which we again denote by φ. Furthermore recall
that π/π(S) is a finite solvable group. Since π/π(S) is finite there exists n > 0 such
that φn : π/π(S) → π/π(S) acts as the identity. We can therefore consider the
semidirect product Z/nn π/π(S) where 1 ∈ Z/n acts on π/π(S) via φ.

It is now straightforward to check that the assignment

g 7→ (0, α′′(g)), g ∈ π1(Σ′′),
ti 7→ (1, 0)

defines a homomorphism

π1(Σ) = ⟨π1(Σ′′), t1, . . . , tk | tiait−1
i = bi, i = 1, . . . , k⟩ → Z/nn π/π(S)

which we denote by β. Clearly β : π1(Σ) → Z/n n π/π(S) restricts to π1(Σ
′′) →

π/π(S) and hence has the required properties. �
We can now prove the third statement of Theorem 6.4.
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Proof of Theorem 6.4 (3). In light of Lemma 6.6 (together with Corollary 2.3) and
Lemma 6.7 it suffices to show the following claim:

Claim. Let M be a 3–manifold and Σ ⊂ ∂M such that π1(Σ) → π1(M) induces an
isomorphism of prosolvable completions. Furthermore let M ′ ⊂M be a submanifold
with the following properties:

(A) Σ′ := Σ ∩M ′ is a connected subsurface of Σ′,
(B) π1(Σ

′)→ π1(Σ) is injective, and
(C) for any homomorphism α : π1(M)→ S to a finite solvable group the inclusion

map induces isomorphisms

Hj(Σ
′;Z[S])→ Hj(M

′;Z[S])
for j = 0, 1 and we have

Im{π1(Σ′)→ π1(M)
α−→ S} = Im{π1(M ′)→ π1(M)

α−→ S}.
Then π1(Σ

′)→ π1(M
′) induces an isomorphism of prosolvable completions.

By Lemma 2.10 we have to show that for any finite solvable group S the map

ι∗ : Hom(π1(M
′), S)→ Hom(π1(Σ

′), S)

is a bijection.
So let S be a finite solvable group. We first show that ι∗ : Hom(π1(M

′), S) →
Hom(π1(Σ

′), S) is surjective. The various groups and maps in the proof are summa-
rized in the diagram below. Assume we are given a homomorphism α′ : π1(Σ

′)→ S.
By (B) and Proposition 6.8 there exists a homomorphism β : π1(Σ) → T to a fi-
nite solvable group and a homomorphism π : Im{π1(Σ′) → T} → S such that
π ◦ (β ◦ ι) = α′. We write T ′ = Im{π1(Σ′)→ T} and β′ = β ◦ ι : π1(Σ′)→ T ′.

By our assumption that π1(Σ)→ π1(M) induce isomorphisms of prosolvable com-
pletions and by Lemma 2.10 there exists a homomorphism φ : π1(M)→ T such that
β = φ ◦ ι. By (C) we have

Im{π1(M ′)→ π1(M)
φ−→ T} = Im{π1(Σ′)

ι−→ π1(M)
φ−→ T} = Im{π1(Σ′)

β−→ T} = T ′.

Now denote the induced homomorphism π1(M
′)→ T ′ by φ′. Clearly φ′◦ι = β′. Hence

α′ = π ◦ β′ = (π ◦ φ′) ◦ ι. This shows that ι∗ : Hom(π1(M
′), S) → Hom(π1(Σ

′), S)
is surjective. The following diagram summarizes the homomorphisms in the proof of
the previous claim:

π1(Σ
′)

α′
""FF

FF
FF

FF
F

β′=β◦ι

((QQQQQQQQQQQQQQQ

ι

��

ι // π1(Σ)
β

{{xx
xx

xx
xx

x

ι

��

S T ′
π

oo � � // T

π1(M
′)

φ′

66mmmmmmmmmmmmmm
ι // π1(M).

φ

ccFFFFFFFFF
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We now show that ι∗ : Hom(π1(M
′), S)→ Hom(π1(Σ

′), S) is injective. Let α1, α2 :
π1(M

′) → S be two different homomorphisms. Let n be the maximal integer such
that the homomorphisms π1(M

′) → S → S/S(n) induced by α1 and α2 agree. We
will show that the restriction to π1(Σ

′) of the maps π1(M
′)→ S → S/S(n+1) induced

by α1 and α2 are different. Without loss of generality we can therefore assume that
S = S/S(n+1).

We denote by ψ′ the homomorphism π1(M
′) → S → S/S(n) =: G, induced by α1

and α2.

Claim. There exists a homomorphism φ : π1(M)→ H to a finite solvable group and
a homomorphism π : Im{π1(M ′)→ π1(M)→ H} → G such that ψ′ = π ◦ (φ ◦ ι).

By (B) and Proposition 6.8 there exists a homomorphism β : π1(Σ) → H to
a finite solvable group H and a homomorphism π : Im{π1(Σ′) → H} → G such
that π′ ◦ (β ◦ ι) = ψ′ ◦ ι. By our assumption and by Lemma 2.10 there exists a
homomorphism φ : π1(M) → H such that β = φ ◦ ι. By (C) we have Im{π1(Σ′) →
H} = Im{π1(M ′) → H} =: H ′. It is now clear that φ and π have the required
properties. This concludes the proof of the claim.

The following diagram summarizes the homomorphisms in the proof of the previous
claim:

π1(Σ
′)

ψ′◦ι ##FF
FF

FF
FF

F

((QQQQQQQQQQQQQQQ

ι

��

ι // π1(Σ)
β

{{ww
ww

ww
ww

w

ι

��

G H ′
π

oo � � // H

π1(M
′)

ψ′
;;xxxxxxxxx φ′=φ◦ι

66mmmmmmmmmmmmmmm
ι // π1(M).

φ

ccGGGGGGGGG

We now apply (C) and Corollary 2.5 to the case A = π1(Σ
′), B = π1(M

′) and φ′ :
B → H ′ to conclude that the inclusion map induces an isomorphism

π1(Σ
′)/[Ker(φ′ ◦ ι),Ker(φ′ ◦ ι)]→ π1(M

′)/[Ker(φ′),Ker(φ′].

We now consider the homomorphisms α1, α2 : π1(M
′) → S = S/S(n+1). First

note that they factor through π1(M
′)/[Ker(ψ′),Ker(ψ′)]. Now note that Ker(φ′) ⊂

Ker(ψ′) ⊂ π1(M
′), in particular we have a surjection π1(M

′)/Ker(φ′)→ π1(M
′)/Ker(ψ′)

which gives rise to a surjection

π1(M
′)/[Ker(φ′),Ker(φ′)]→ π1(M

′)/[Ker(ψ′),Ker(ψ′)].
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In particular α1, α2 factor through π1(M
′)/[Ker(φ′),Ker(φ′)]. We therefore obtain

the following commutative diagram

π1(Σ
′)

��

ι // π1(M
′)

uukkkkkkkkkkkkkkk

α1α2

��

π1(Σ
′)/[Ker(φ′ ◦ ι),Ker(φ′ ◦ ι)]

∼= // π1(M
′)/[Ker(φ′),Ker(φ′)]

��
π1(M

′)/[Ker(ψ′),Ker(ψ′)]

))TTTTTTTTTTTTTTTTT

S.

It is now clear that α1 ◦ ι and α2 ◦ ι are different. This concludes the proof that
ι∗ : Hom(π1(M

′), S) → Hom(π1(Σ
′), S) is injective. As we pointed out before, it

now follows from Lemma 2.10 that ι : π1(Σ
′) → π1(M

′) induces an isomorphism of
prosolvable completions. �

7. The proof of Theorem 1.2

We start out with the following two results which allow us to reduce the proof of
Theorem 1.2 to the case of closed prime 3–manifolds.

Lemma 7.1. Let N be a 3–manifold with empty or toroidal boundary and let ϕ ∈
H1(N ;Z) be nontrivial. If ∆α

N,ϕ is nonzero for any homomorphism α : π1(N) → G
to a finite group G, then N is prime.

Note that the main idea for the proof of this lemma can already be found in
[McC01].

Proof. LetN be a 3–manifold with empty or toroidal boundary which is not prime, i.e.
N = N1#N2 with N1, N2 ̸= S3. We have to show that there exists a homomorphism
α : π1(N) → G to a finite group such that ∆α

N,ϕ = 0. Recall that by Lemma 2.9

we have ∆α
N,ϕ = 0 if and only if H1(N ;Q[G][t±1]) is not Q[t±1]–torsion. Note that

we can write N = (N1 \ intD3) ∪S2 (N2 \ intD3) and that Hj(Ni \ intD3;Q[t±1]) =
Hj(Ni;Q[t±1]) for j = 0, 1 and i = 1, 2. The Mayer–Vietoris sequence corresponding
to N = (N1 \ intD3) ∪S2 (N2 \ intD3) now gives rise to the following long exact
sequence:

H1(S
2;Q[t±1]) → H1(N1;Q[t±1]) ⊕ H1(N2;Q[t±1]) → H1(N ;Q[t±1]) →

H0(S
2;Q[t±1]) → H0(N1;Q[t±1]) ⊕ H0(N2;Q[t±1]) → H0(N ;Q[t±1]) → 0.

A straightforward computation shows thatH0(S
2;Q[t±1]) = Q[t±1] andH1(S

2;Q[t±1]) =
0.
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First assume that b1(Ni) > 0 for i = 1, 2. Denote by ϕi the restriction of ϕ :
H1(N ;Q)→ Q toH1(Ni;Q). If ϕi is nontrivial for i = 1 and i = 2, then it follows from
Lemma 2.2 and Lemma 2.9 that H0(Ni;Q[t±1]) is Q[t±1]–torsion for i = 1, 2. On the
other hand we haveH0(S

2;Q[t±1]) = Q[t±1]. It follows from the above Mayer–Vietoris
sequence that H1(N ;Q[t±1]) can not be Q[t±1]–torsion. On the other hand, if ϕi is
trivial for some i ∈ {1, 2}, then H1(Ni;Q[t±1]) is isomorphic to H1(Ni;Q) ⊗ Q[t±1],
in particular H1(Ni;Q[t±1]) is not Q[t±1]–torsion, and using that H1(S

2;Q[t±1]) = 0
it follows again from the above Mayer–Vietoris sequence that H1(N ;Q[t±1]) is not
Q[t±1]–torsion.

Now assume that either b1(N1) = 0 or b1(N2) = 0. Without loss of generality we can
assume that b1(N2) = 0. Since b1(N) = b1(N1) + b1(N2) we have b1(N1) > 0. By the
Geometrization Conjecture π1(N2) is nontrivial and residually finite (cf. [Th82] and
[He87]), in particular there exists an epimorphism α : π1(N2) → G onto a nontrivial
finite group G. Denote the homomorphism π1(N) = π1(N1) ∗ π1(N2)→ π1(N2)→ G
by α as well. Then by Lemma 2.8 we have

∆α
N,ϕ = ∆NG,ϕG

where p : NG → N is the cover of N corresponding to α and ϕG = p∗(ϕ). But the
prime decomposition of NG has |G| copies of N1. By the argument above we now
have that ∆NG,ϕG = 0, which implies that ∆α

N,ϕ = ∆NG,ϕG = 0. �

Lemma 7.2. Let N be an irreducible 3–manifold with non–empty toroidal boundary
and let ϕ ∈ H1(N ;Z) be nontrivial. Let W = N ∪∂N N be the double of N along the
boundary of N . Let Φ = p∗(ϕ) ∈ H1(W ;Z) where p : W → N denotes the folding
map. Then the following hold:

(1) (W,Φ) fibers over S1 if and only if (N, ϕ) fibers over S1,
(2) if (N, ϕ) satisfies Condition (∗), then (W,Φ) satisfies Condition (∗).

In the proof of Lemma 7.2 we will make use of the following well–known lemma.
We refer to [EN85, Theorem 4.2] and [Ro74] for the first statement, and to [EN85,
p. 33] for the second statement.

Lemma 7.3. Let Y be a closed 3–manifold. Let T ⊂ Y be a union of incompressible
tori such that T separates Y into two connected components Y1 and Y2. Let ψ ∈
H1(Y ;Z). Then the following hold:

(1) If ||ϕ||T,Y > 0, then (Y, ψ) fibers over S1 if and only if (Y1, ψ|Y1) and (Y2, ψ|Y2)
fiber over S1,

(2) ||ψ||T,Y = ||ψ|Y1 ||T,Y1 + ||ψ|Y2 ||T,Y2.

Proof of Lemma 7.2. First note that an irreducible 3–manifold with boundary a union
of tori has compressible boundary if and only if it is the solid torus. Since the lemma
holds trivially in the case that N = S1 × D2 we will from now on assume that N
has incompressible boundary. This implies in particular that ||ϕ||T > 0. The first
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statement is now an immediate consequence of Lemma 7.3 and the observation that
Φ|N = ϕ.

Now assume that (N, ϕ) satisfies Condition (∗). In the following we write Ni =
N, i = 1, 2 and we think of W as W = N1 ∪∂N1=∂N2 N2. Let α : π1(N) → G be a
homomorphism to a finite group G. We write n = |G|, V = Z[G] and we slightly
abuse notation by denoting by α the representation π1(W ) → Aut(V ) given by left
multiplication. We have to show that ∆α

W,Φ ∈ Z[t±1] is monic and that

deg(∆α
W,Φ)− deg(∆α

W,Φ,0)− deg(∆α
W,Φ,2) = n ∥Φ∥T

(here we used Lemma 2.8 to rephrase the last condition). For any submanifoldX ⊂ W
we denote the restriction of Φ and α to π1(X) by Φ and α as well. Evidently the
restriction of Φ to N = Ni, i = 1, 2 just agrees with ϕ.

In order to prove the claims on ∆α
W,Φ we will in the following express ∆α

W,Φ in terms
of ∆α

Ni,ϕi
, i = 1, 2. The following statement combines the assumption that (N,ϕ)

satisfies Condition (∗) with Lemmas 2.8 and 2.9.

Fact 1. For i = 1, 2 we have

deg(∆α
Ni,Φ

)− deg(∆α
Ni,Φ,0

)− deg(∆α
Ni,Φ,2

) = n ∥Φ∥T,Ni
.

Furthermore for all j we have that ∆α
Ni,Φ,j

is monic.

We now turn to the twisted Alexander polynomials of the boundary tori of ∂N .
The following is an immediate consequence of Theorem 6.5.

Fact 2. If ∆N,ϕ ̸= 0 (in particular if (N, ϕ) satisfies Condition (∗)), then for any
boundary component T ⊂ ∂N the restriction of ϕ (and hence of Φ) to π1(T ) is
nontrivial.

This fact and a straightforward computation now gives us the following fact (cf.
e.g. [KL99]).

Fact 3. Let T ⊂ ∂N be any boundary component. Then

(1) ∆α
T,Φ,i is monic for any i,

(2) Hi(T ;V [t±1]) = 0 for i ≥ 2, in particular ∆α
T,Φ,i = 1 for i ≥ 2,

(3) ∆α
T,Φ,0 = ∆α

T,Φ,1.

We now consider the following Mayer–Vietoris sequence:

0 → H2(N1;V [t±1])⊕H2(N2;V [t±1]) → H2(W ;V [t±1]) →
H1(∂N ;V [t±1]) → H1(N1;V [t±1])⊕H1(N2;V [t±1]) → H1(W ;V [t±1]) →
H0(∂N ;V [t±1]) → H0(N1;V [t±1])⊕H0(N2;V [t±1]) → H0(W ;V [t±1]) → 0.

Recall that we assume that (N, ϕ) (and hence (Ni, ϕ), i = 1, 2) satisfy Condition (∗).
By Lemmas 2.8 and 2.9 and Facts 1 and 3 it follows that all homology modules in
the above long exact sequence but possibly H1(W ;V [t±1]) and H2(W ;V [t±1]) are
Z[t±1]–torsion. But then evidently H1(W ;V [t±1]) and H2(W ;V [t±1]) also have to be
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Z[t±1]–torsion. Furthermore it follows from Fact 3, [Tu01, Theorem 3.4] and [Tu01,
Theorem 4.7] that

(5)
∆α
W,Φ,1

∆α
W,Φ,0∆

α
W,Φ,2

=
∆α
N1,Φ,1

∆α
N1,Φ,0

∆α
N1,Φ,2

·
∆α
N2,Φ,1

∆α
N2,Φ,0

∆α
N2,Φ,0

.

Note that ∆α
W,Φ,0 and ∆α

W,Φ,2 are monic by Lemma 2.8, it now follows from Fact 1
and Equality (5) that ∆α

W,Φ,1 is monic as desired.
Finally we can appeal to Lemma 7.3 to conclude that ||Φ||T,W = ||Φ||T,N1+||Φ||T,N2 .

It therefore follows from Fact 1 and Equation (5) that

deg(∆α
W,Φ)− deg(∆α

W,Φ,0)− deg(∆α
W,Φ,2) = n ∥Φ∥T,W

as required. �

Let N be a 3–manifold with empty or toroidal boundary. We write π = π1(N).
Let π̃ ⊂ π be a finite index subgroup and ϕ ∈ H1(N ;Z) nontrivial. We now say that

the pair (π̃, ϕ) has Property (M) if the twisted Alexander polynomial ∆
π/π̃
N,ϕ ∈ Z[t±1]

is monic and if

deg(∆
π/π̃
N,ϕ) = [π : π̃] ∥ϕ∥T + (1 + b3(N))divϕπ̃

holds.
The first statement of the following lemma is well–known, the second one can be

easily verified and the third is an immediate consequence of the second statement.

Lemma 7.4. Let N be a 3–manifold with empty or toroidal boundary and let ϕ ∈
H1(N ;Z) be nontrivial. Let k ̸= 0 ∈ Z. Then the following hold:

(1) (N,ϕ) fibers over S1 if and only if (N, kϕ) fibers over S1,
(2) Let π̃ ⊂ π be a finite index subgroup. Then (π̃, ϕ) has Property (M) if and

only if (π̃, kϕ) has Property (M),
(3) (N,ϕ) satisfies Condition (∗) if and only if (N, kϕ) satisfies Condition (∗).

We will also need the following lemma.

Lemma 7.5. Let N be a 3–manifold with empty or toroidal boundary and let ϕ ∈
H1(N ;Z) be non–trivial. Suppose that all finite index normal subgroups of π1(N)
have Property (M), then in fact all finite index subgroups of π1(N) have Property
(M).

Proof. We write π := π1(N). Let ϕ ∈ H1(N ;Z) be non–trivial. By Lemma 7.4 (2)
we can without loss of generality assume that ϕ is primitive. Let π̃ ⊂ π be a finite
index subgroup. We denote by π̂ ⊂ π the core of π̃, i.e. π̂ = ∩g∈πgπ̃g−1. Note that π̂
is normal in π and contained in π̃.

By Proposition 3.1 the class ϕ is dual to a connected Thurston norm minimizing
surface Σ. We write A = π1(Σ) and B = π1(N \ νΣ) as before.
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We write B̂ := B∩ π̂ and Â± := (ι±)
−1(B̂). We now pick representatives g1, . . . , gm

for the equivalence classes of B\π/π̃. For i = 1, . . . ,m we write B̃i := B∩ giπ̃g−1
i and

Ã±
i := (ι±)

−1(B̃i).
Since π̂ ⊂ π is normal and since we assume that normal finite index subgroups have

Property (M) we can now apply Proposition 3.2 and Lemma 2.1 to conclude that

ι± : Hj(A;Z[B/B̂])→ Hj(B;Z[B/B̂])

are isomorphisms for j = 0, 1. It now follows from Corollary 2.5 that the maps

ι± : A/Â± → B/B̂ and ι± : A/[Â±, Â±]→ B/[B̂, B̂]

are isomorphisms. Recall that π̂ is normal in π, it follows that B̂ ⊂ B is normal and
for any i we have B̂ = B ∩ giπ̂g−1

i ⊂ B ∩ giπ̃g−1
i = B̃i. We now deduce from Lemma

2.7 that

ι± : A/Ã±
i → B/B̃i and ι± : A/[Ã±

i , Ã
±
i ]→ B/[B̃i, B̃i]

are bijections for i = 1, . . . ,m. It now follows from Lemma 2.4 that the maps

ι± : Hj(A;Z[π/π̃])→ Hj(B;Z[π/π̃])

are isomorphisms. It now follows from Proposition 3.2 that π̃ also has Property
(M). �

We will now use the previous lemma to prove the following lemma.

Lemma 7.6. Let N be a 3–manifold with empty or toroidal boundary and let ϕ ∈
H1(N ;Z) be non–trivial. Let p : N ′ → N be a finite cover. We write ϕ′ = p∗(ϕ) ∈
H1(N ′;Z). Then the following hold:

(1) ϕ′ is nontrivial,
(2) (N,ϕ) fibers over S1 if and only if (N ′, ϕ′) fibers over S1,
(3) if (N, ϕ) satisfies Condition (∗), then (N ′, ϕ′) satisfies Condition (∗).

Proof. The first statement is well–known. The second statement is a consequence
of [He76, Theorem 10.5]. We now turn to the third statement. Assume that (N,ϕ)
satisfies Condition (∗).

Let π̃ be a normal finite index subgroup of π′ = π1(N
′). We have to show that (π̃, ϕ′)

has Property (M). Note that π̃ viewed as a subgroup of π = π1(N) is not necessarily
normal. It nonetheless follows from the assumption that (N,ϕ) satisfies Condition (∗)
and from Lemma 7.5 that the twisted Alexander polynomial ∆

π/π̃
N,ϕ ∈ Z[t±1] is monic

and that

deg(∆
π/π̃
N,ϕ) = [π : π̃] ∥ϕ∥T + (1 + b3(N))divϕπ̃

holds. It now follows easily from Lemma 2.8, b3(N) = b3(N
′), and the multiplicative

property of the Thurston norm under finite covers (cf. [Ga83, Corollary 6.13]) that
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the twisted Alexander polynomial ∆
π′/π̃
N ′,ϕ′ ∈ Z[t±1] is monic and that the following

equality holds:

deg(∆
π′/π̃
N ′,ϕ′) = [π′ : π̃] ∥ϕ′∥T + (1 + b3(N

′))divϕ′
π̃.

In particular (π̃, ϕ′) has Property (M). �
We are now finally in a position to prove Theorem 1.2.

Proof of Theorem 1.2. First note that the combination of Theorem 1.9 and Lemmas
7.1, 7.2, 7.6 and 7.4 shows that it suffices to show the following claim:

Claim. Assume we are given a pair (N, ϕ) where

(1) N is a closed irreducible 3–manifold such that the fundamental group of each
JSJ component is residually p, and

(2) ϕ is primitive.

If (N, ϕ) satisfies Condition (∗), then (N,ϕ) fibers over S1.

Let (N, ϕ) be a pair as in the claim which satisfies Condition (∗). If ||ϕ||T = 0,
then it follows from [FV08b, Proposition 4.6] that (N,ϕ) fibers over S1.

We can and will therefore henceforth assume that ||ϕ||T > 0. We denote the tori
of the JSJ decomposition of N by T1, . . . , Tr. We pick a connected Thurston norm
minimizing surface Σ dual to ϕ and a tubular neighborhood νΣ = Σ× [−1, 1] ⊂ N as
in Section 6.1. In particular we can and will throughout assume that Σ×t and the tori
T1, . . . , Tr are in general position for any t ∈ [−1, 1] and that for any i ∈ {1, . . . , r}
any component of Σ∩Ti represents a nontrivial element in π1(Ti). Furthermore as in
Section 6 we assume that our choice of Σ minimizes the number

∑r
i=1 b0(Σ ∩ Ti).

Let A1, . . . , Am be the components of the intersection of the tori T1, . . . , Tr with
M := N \ Σ × (−1, 1). Furthermore let M1, . . . ,Mn be the components of M cut
along A1 ∪ · · · ∪ Am. Recall that any Mi is a submanifold of a JSJ component of N .

For i = 1, . . . ,m write Ci = Ai∩Σ−. It follows from Lemma 6.3 that for i = 1, . . . ,m
the surface Ai is an annulus which is a product on Ci, i.e. Ci consists of one component
and π1(Ci)→ π1(Ai) is an isomorphism.

In order to show that M is a product on Σ− it suffices to show that π1(Σ
−
i ) →

π1(Mi) is an isomorphism for any i ∈ {1, . . . , n}. So let i ∈ {1, . . . , n}. Since (N,ϕ)
satisfies Condition (∗) it follows from Proposition 1.7 that the maps π1(Σ

±)→ π1(M)
induce an isomorphism of prosolvable completions. By Theorem 6.4 (1) the surfaces
Σ±
i are connected, and by Theorem 6.4 (3) the inclusion induced maps π1(Σ

±
i ) →

π1(Mi), i = 1, . . . , n also induce isomorphisms of prosolvable completions. By Theo-
rem 6.4 (2) we have that the group π1(Mi) is a subgroup of the fundamental group
of a JSJ component of N . By our assumption this implies that π1(Mi) is residually
p, in particular residually finite solvable.

In the following we view Mi as a sutured manifold with sutures given by γi =
∂N ∩ Mi. We can pick orientations such that R−(γi) = Σ−

i and R+(γi) = Σ+
i .
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Since Σ ⊂ N is Thurston norm minimizing it follows that (Mi, γi) is a taut sutured
manifold. We can therefore now apply Theorem 4.1 to conclude that (Mi, γi) is a
product sutured manifold, i.e. π1(Σ

−
i )→ π1(Mi) is an isomorphism. �
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